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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

1.1 Dissertation Overview 

This dissertation details the work performed by the author in the Jeffries-EL group from 

2009-2015. The work discussed is centered around the design, synthesis, and 

characterization of various π-conjugated materials and their use in organic photovoltaic 

(OPV) solar cells. Chapter 1 is a general introduction to the physical and electronic 

properties of organic semiconducting materials, as well as the synthetic principals toward 

designing narrow band gap materials. An overview of the history, physics, and engineering 

requirements of OPV solar cells is also discussed.  

Chapter 2 is a paper that has been submitted to Chemistry – A European Journal for 

publication and discusses the impact of nitrogen substitution for the sulfur atom of the 

widely used thienopyrroledione (TPD) acceptor unit. The majority of the synthetic work 

was performed by the author. Additional monomer precursors were synthesized by Jon 

Stoffer. The device fabrication and testing was performed by Moneim Elshobaki and Ryan 

Gebhardt. Computational work was performed by David Wheeler. The computational 

section was written by Aimée Tomlinson. The remainder of the manuscript was written by 

the author of this dissertation. 

Chapter 3 is a manuscript in preparation for Macromolecules and reports the synthesis 

of a series of donor-acceptor-donor-acceptor-donor (D1-A-D2-A-D1) based molecular 

donors and the impact of the variation of D1 and D2 on the physical and electronic 
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properties of the materials, as well as their performance in organic photovoltaic devices. 

All of the synthetic work was performed by the author. The device fabrication, testing, and 

characterization was performed by Ryan Gebhardt. The manuscript was written by the 

author of this dissertation. 

Chapter 4 is a manuscript in preparation for Polymer Chemistry and reports the 

synthesis, characterization, and the impact of heteroatom substitution and side chain 

variation on the photovoltaic performance of four dithienosilole-alt-diketopyrrolopyrrole 

based polymers. All of the synthetic work was performed by the author. Some of the 

intermediate 3,3’-dibromo-5,5’-bis(trimethylsilyl)-2,2’-bithiophene was recrystallized by 

Dr. Achala Bhuwalka. The device fabrication is currently being performed by Ian Pelse 

under the supervision of Dr. John Reynolds. The manuscript was written by the author of 

this dissertation. 

Chapter 5 is a manuscript that is in preparation for Macromolecular Rapid 

Communications and expands upon the pyrrolopyrroledione (PPD) unit described in 

Chapter 4 by using PPD as a donor in donor-acceptor copolymers with both TPD and 

diketopyrrolopyrrole as acceptors. The majority of the synthetic work was performed by 

the author. Additional monomer precursors were synthesized by Jon Stoffer. The 

manuscript was written by the author of this dissertation. 

Chapter 6 draws some general conclusions of the work performed The chapter 

concludes with acknowledgements from the author of this dissertation, followed by an 

appendix of terms used in this dissertation. 
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1.2 Origins of Organic Semiconductors 

 Nearly forty years ago, Shirakawa, MacDiarmid, and Heeger et al. reported the first 

instance of an organic semiconductor with the discovery of electrical conductivity in doped 

polyacetylene.1, 2 Since that time, interest in organic semiconductors has grown 

exponentially, with progress in the research of these materials taking them from being 

merely an academic curiosity to  being commercially viable in a variety of applications, 

such as organic photovoltaics (OPVs),3-7 light-emitting diodes (OLEDs),8-11 field-effect 

transistors (OFETs),12-19 non-linear optics,20-24 electrochemical cells (batteries),25-27 and 

sensor devices.28-30 Although interest in organic semiconductors is at an all-time high, 

inorganic semiconductors are still predominantly used in devices, yet organics offer 

numerous potential advantages over inorganics. 

Most materials commonly used in inorganic semiconductors, including silicon, 

germanium, gallium arsenide, cadmium telluride, and lead (pervoskites), require high cost-

processing on an industrial scale and face various issues in terms of extreme toxicity and 

air stability, particularly in photovoltaics.31 For efficient silicon-based devices, ultra-high 

purity silicon is required as well as expensive processing techniques, such as vapor 

deposition and lithographic printing, due to the detrimental impact of defects on device 

performance.32-35 Perovskite-based photovoltaics suffer heavily from air stability issues 

and the toxicity of lead salts. Cadmium telluride photovoltaics, while less sensitive to 

defects and having significantly cheaper fabrication costs than silicon, suffer from lower 

efficiencies, the extreme toxicity of cadmium, and the toxicity and low availability of 

tellurium. Even after accounting for recovery from recycling, recent projections suggest 
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that the capacity for manufacturing thin-film photovoltaic cells from cadmium telluride is 

very near the maximum supply of tellurium available.36 

 On the other hand, organic semiconductors, while currently less efficient than their 

inorganic counterparts (Figure 1.1), offer several advantages. Organic semiconductors, 

made from petroleum products, can be fabricated into devices using low-cost techniques, 

such as spin-coating,37 inkjet printing,38 dip coating,39 and screen printing40 due to their 

solubility in common organic solvents. These techniques lend well to commercial 

applications, for instance roll-to-roll processing, as they are easily scaled up and allow the 

fabrication of large area panels on flexible substrates.41 Even with recent developments in 

flexible silicon-based photovoltaics,42 the ability to fine-tune the physical and electronic 

properties of organic semiconductors through structural modification gives rise to a wide  

 

Figure 1.1. Best efficiencies of research solar cells. Organics are in red (bottom right).43 
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range of properties not attainable in inorganics. Synthetic structural modifications of an 

organic molecule can be used to specifically design a material for an application that it 

would best be suited and control the performance in a semiconducting device.44 

 The origin of electrical conductivity in organic materials is a direct result of an 

extended π-system created by alternating single and double bonds. The formation of band-

like structures is dependent on the extent of π-conjugation in a system. Figure 1.2 shows 

how these band structures are formed in polyacetylene. As the chain length increases from 

ethylene to butadiene to octatetraene to the n-ene, the number of π- and π*-molecular 

orbitals (MOs) increases from 1 to 2 to 4 to n-π and π* orbitals. With the addition of each 

successive π- and π*-orbital, the highest occupied molecular orbital (HOMO) increases  

 
Figure 1.2. Origin of the band structure of polyacetylene from π-molecular orbitals. 
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while the lowest occupied molecular orbital (LUMO) decreases.45 When the number of π-

MOs increases, the range of energies they occupy becomes wider, and the MOs become 

closer in energy. As the conjugation approaches infinity, the energy difference between the 

filled π- and empty π*-MOs becomes so small that the orbitals begin to resemble the 

traditional band-like structures that are common with inorganic semiconductors, with the 

π- and π*-orbitals being analogous to the valence and conduction bands, respectively, and 

the distance between them corresponding to the bandgap.1 Both the location of the band 

structure and the size of the bandgap determine the properties of the semiconducting 

materials, but, as discussed later, this band structure can be fine-tuned through material 

design to have the necessary properties for the desired application. 

 
Figure 1.3. Simplified band diagrams for metals, semiconductors, and insulators. 

 

 While the formation of band structures is necessary for high electrical conductivity, the 

magnitude of the bandgap primarily determines whether a material is a conductor, 
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semiconductor, or insulator, as depicted in Figure 1.3. In the case of metals, there is only a 

partially-filled band, as opposed to two discreet bands with a bandgap, which allows for 

the free flow of electrons and holes. Insulators, on the other hand, possess a very large 

bandgap that prevents all conduction, as electrons are unable to be thermally promoted to 

states capable of carrying current. Semiconductors also have a bandgap, but it is much 

narrower, enabling a dilute number of thermally excited carriers to reside near the 

conduction band edge.46, 47 While in theory polymer conjugation could extend from one 

end of the chain to the other, in practice defects in the structure or steric interactions can 

cause twisting in the backbone. If the degree of twisting is enough, this can limit the 

delocalization of π-electrons to smaller segments, reducing the effective conjugation length 

of the material, which in turn increases the bandgap. 

 

 
Figure 1.4. Bandgap formation due to Peierls distortion in polyacetylene. 

 

 In an ideal world, polyacetylene would be able to increase its conjugation to the point 

where the HOMO and LUMO converged, making it an organic metal with an effective 

conjugation length running the entirety of the polymer. In this scenario, the fully 
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delocalized π-system (Bond Equal, Figure 1.4) along the polymer backbone would cause 

every bond to be the same length. The full delocalization of the π-electrons would allow 

them to freely move throughout the length of the polymer, resulting in the band structure 

of a metal. In reality, polyacetylene experiences a geometric deformation, known as Peierls 

distortion, that results in alternating short and long bonds, caused by the interactions of 

bonding and non-bonding π-orbitals (Bond Alternated, Figure 1.4).48 This difference in 

bond length is observable in nuclear magnetic resonance and x-ray diffraction 

spectroscopy, and has been measured to be 1.35 Å and 1.45 Å.48, 49 This distortion prevents 

full delocalization of the π-electrons, causing a splitting of the energy levels and the 

formation of a bandgap.50 

 The two bond lengths of polyacetylene arise due to the two degenerate ground states of 

polyacetylene. These states, labeled as R and L in Figure 1.4, have HOMOs having π-

bonding interactions between the double bonds and π-antibonding interactions between the 

single bonds, with the only difference between R and L being the position of the double 

and single bonds. Conversely, the LUMOs experience π-bonding interactions between the 

single bonds and π-antibonding interactions between the double bonds. Both the HOMO 

and LUMO of R are energetically equivalent to the respective HOMO and LUMO of L. 

Further examination shows the HOMO of the R form corresponds to the LUMO of the L 

form, and the HOMO of the L form corresponds to the LUMO of the R form. This 

relationship leads to a thermally forbidden transition between the two forms, resulting in a 

dimerization of the polymer and the alternating bonds.51 The Peierls distortion caused by 

these two forms result in the formation of the two bands and a medium bandgap of 1.5 eV, 

making polyacetylene an organic semiconductor.52 
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  Unfortunately, most conjugated materials aren’t as simple as polyacetylene, such as 

the case of poly(p-phenylene) (PPP) shown in Figure 1.5. The backbones of more complex 

polyaromatic conjugated materials can be defined as “a series of consecutive carbon-

carbon double bonds linked together by carbon-carbon single bonds.”53 Using this 

definition, there are two possible resonance structures for the ground state with 

nondegenerate energy. The first resonance structure is called the aromatic form. In the  

 

 
Figure 1.5. Potential energy diagrams of polyacetylene (a) and poly(p-phenylene) (b) 

 

aromatic form, each carbocycle or heterocycle confines its π-electrons within the ring, 

maintaining aromaticity. Delocalization of the π-electrons along the backbone converts all 

double bonds to single bonds and single bonds to double bonds, resulting in the quinoid 

form. The quinoid form is less stable, having lost the stabilizing effects of aromaticity, and 

has a higher HOMO and lower LUMO, resulting in a reduced bandgap. This change in 

energy is represented in Figure 1.5b. 

 The ratio of aromatic population to quinoid can be expressed in terms of the parameter 

bond length alternation (BLA), which is defined as the average of the difference in length 

between adjacent carbon-carbon bonds in a polyene chain.54 The higher the aromatic 
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contribution in the ground state, the larger the BLA value.55 When quinoid contribution 

increases, the single bonds begin to shorten as they gain more double bond character, and 

the BLA begins to decrease. As BLA decreases, quinoid character increases linearly, and 

the bandgap decreases.56 

 Given the relationship between BLA and bandgap, along with the high dependence of 

the BLA on the aromatic stabilization resonance energy of an aromatic unit, structural 

modifications introduced along the conjugated backbone can be used to widen or narrow 

the bandgap. The effect of aromaticity on bandgap is shown in Figure 1.6. Due to the high 

degree of aromaticity in benzene rings, poly(p-phenylene) has a large bandgap of 

approximately 3.2 eV. With the introduction of something as simple as a double bond  

 

 
Figure 1.6. Aromatic and quinoid resonance forms of poly(p-phenylene) (PPP), poly(p-
phenylenevinylene) (PPV), polythiophene (PT), and poly(isothianaphthene) (PITN) with 
relative contribution of each form represented by the colored circles. 
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between the rings, giving poly(p-phenylenevinylene), the aromaticity of the benzene rings 

is diluted and a reduction in the bandgap down to 2.4 eV is observed. The inclusion of 

aromatic units with lower aromaticity, such as thiophene, can further lower the bandgap. If 

all of the benzene units are replaced to give polythiophene, the bandgap is lowered to 2.0 

eV.57 The first truly low bandgap material reported was poly(isothianaphthene) (PITN), 

with a bandgap of 1.0 eV.58 The remarkably low bandgap of PITN was achieved by placing 

benzene rings on the [3,4-c] edge of the thiophene. Benzene aromaticity, having a greater 

aromatic resonance energy than thiophene (1.56 vs 1.26 eV, respectively), is preferred over 

thiophene aromaticity.59, 60 This preference allows the main chain of PITN to favor the 

quinoid form to maintain benzene aromaticity, narrowing the bandgap. 

 As previously mentioned, the effective conjugation length of a material is an important 

parameter in determining the bandgap. The effective conjugation length is highly 

dependent on the nature and, in many cases, the order of the aromatic units in the 

conjugated backbone, therefore the effective conjugation length varies drastically between 

materials.61-63 The downside of this approach is it possesses only so much utility, due to 

the inevitable leveling off of the bandgap due to Peierls distortion. 

 
Figure 1.7. Relationship between chain length and bandgap in oligiothiophene. 
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 The relationship between bandgap reduction and conjugation length was demonstrated 

in a study by Otsubo, et al., where the bandgap of functionalized oligiothiophene was 

measured in the dimer to the 96-mer.64 As seen in Figure 1.7, there is a drastic reduction 

of 1.51 eV in bandgap going from n=2 (3.95 eV) to n=12 (2.43 eV). The addition of each 

new repeat unit shows diminishing returns, with n=1 to n=2, n=2 to n=3, and so on, 

showing a smaller and smaller reduction in bandgap. While n=2 to n=12 had a reduction 

of 1.51 eV, extension from n=12 to n=24 gave only a 0.15 eV reduction. Quadrupling the 

chain length from the 24-mer to the 96-mer gave a bandgap reduction of only 0.11 eV. The 

varying properties of conjugated materials allows for the effective conjugation length to be 

as short as 8 repeat units, with many falling in the 11 – 20 repeat unit range.65-67 Even 

though increasing conjugation length has a limited effect on bandgap, other important 

properties, such as film-forming ability and charge transport mobility, are benefited by 

increased length, and will be discussed later.68, 69 

 
Figure 1.8. Effect of steric interactions on planarity of conjugated materials. 

 

 Steric defects in a material can have a detrimental impact on planarity, causing a 

reduction in the bandgap. One approach to guaranteeing a narrow bandgap is to reduce 

steric interactions between adjacent aromatic units. Reduction in steric interactions 

increases planarization between adjacent aromatic units. This increased planarization 
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allows parallel p-orbital interactions to extend conjugation and further facilitate 

delocalization. This increased delocalization leads to a decrease in BLA and reduction in 

bandgap. Various causes of backbone twisting are shown in Figure 1.8. The biggest culprit 

to breaking main chain planarity is the interaction of alkyl chains on two adjacent rings. 

Inclusion of 6-membered rings in the backbone can also lead to issues, particularly when 

alkyl chains are present and allow for alkyl – H interactions. A lesser degree of twisting 

can be see with H – H interactions on adjacent 6-membered rings. Chemical rigidification 

is one of the most effective ways to decrease steric interactions between adjacent aromatic 

units. Rigidification is best achieved through the introduction of functionalized methylene 

or heteroatom bridges to form ladder-type structures. This forces planarity, which 

decreases BLA, and, in turn, reduces the bandgap.70, 71 

 

 
Figure 1.9. Promotion of the quinoid form through functional group resonance. 

 

 The addition of electron donating groups (EDGs) or electron withdrawing groups 

(EWGs) directly onto the aromatic units in the main chain is an effective way of perturbing 

the molecular orbitals, through either inductive or mesomeric effects.72 In the example 

shown in Figure 1.9, the addition of electron-donating amines and electron-withdrawing 

nitro groups on the neighboring thiophene results in a very low bandgap of 1.1 eV due to 

the high degree of zwitterionic and quinoid character.73 Some examples of common  
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Figure 1.10. Common electron-rich donors and electron-deficient acceptors. 

 

electron-donating and electron-accepting units are shown in Figure 1.10. Generally, the 

addition of electron-donating substituents such as alkyls, alkoxys, amines, and electron rich 

heteroatoms increase the ionization potential, raising the HOMO energy level of the 

molecule. The opposite holds true with the addition of electron-withdrawing substituents. 

The incorporation of fluorines, imines, nitriles, amides, imides, ketones, esters, and nitro 

groups tend to increase the electron affinity, resulting in lower LUMO levels.74 

 To date, the most effective and widely used method in reducing bandgaps has been the 

design of materials with alternating conjugated electron-rich donors (D) and a conjugated 

electron-deficient acceptor (A) in the same backbone.75-78 The use of this D–A system 

creates a push-pull driving force, helping facilitate electron delocalization and stabilize 

mesomeric quinoid structures (D–A → D+=A-) over the material, reducing BLA. In the 

case of materials for photovoltaics, photoinduced intramolecular charge transfer (ICT), 
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correlated with the high-lying HOMO of the donor unit and the low-lying LUMO of the 

acceptor unit can also account for a reduced bandgap.78  

 The simplest and most explicit explanation for the bandgap reduction in D–A systems, 

illustrated in Figure 1.11, involves the hybridization of the molecular orbital between the 

donor and acceptor in the D–A material.79 In these systems, the HOMO of the donor unit 

interacts with the HOMO of the acceptor unit, according to the rules of perturbation theory, 

to give two new HOMOs for the D–A system.52, 80, 81 In a similar fashion, the LUMO of 

the donor unit interacts with the LUMO of the acceptor unit to give two new LUMOs for 

the D–A system. The result, after redistribution of the electrons to these new hybridized 

orbitals, is a higher lying HOMO, lower lying LUMO, and a smaller bandgap. This allows 

energy level and bandgap tuning by careful choice of the donor-acceptor combination. 

 
Figure 1.11. Orbital mixing of donor (D) and acceptor (A) units in a D–A system leading 
to a reduced bandgap. 
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 The most important property of a π-conjugated material that can be viable in electronics 

is solubility in organic solvents. If a material is completely insoluble, there is no way for it 

to be processed or utilized in a device. On the other hand, the material must have sufficient 

π-character to maintain reasonable charge transport capabilities. In the case of polymers, 

charge transport ability is directly related to the molecular weight of the polymer, or degree 

of polymerization.69, 82 A significant factor influencing solubility in both polymeric and 

molecular conjugated materials are intermolecular interactions caused by greater rigidity 

along the backbone and stacking through π–π interactions between molecules.83 Increasing 

the length of the π-system, backbone rigidity, and intermolecular π-stacking can have 

beneficial impacts on  the film forming properties and increasing charge carrier ability, yet 

unfortunately, also have a negative impact on the solubility of a material. 

 Strong intermolecular π–π stacking is the predominant cause of poor solubility in 

polyaromatic systems. The introduction of aliphatic side-chains to the conjugated 

backbone has, thus far, been one of the easiest and most effective ways to combat solubility 

issues. Nearly all reasonably effective conjugated materials require aliphatic chains to be 

solution-processable. The selection of appropriate alkyl chains is necessary, as they can 

have a large impact on the performance of an organic semiconductor through both 

imparting varying degrees of order in a thin film, but also modifying the energy levels as 

well.84 Materials utilizing short, linear side chains tend to suffer from poor solubility, while 

the use of long or branched alkyl chains results in higher solubility, but at a cost.85 The use 

of bulky branched chains can disrupt intermolecular π-stacking, thereby reducing 

photoconductivity in photovoltaics. Although detrimental to OPVs, this is beneficial to 

OLEDs due to the tendency to limit fluorescence quenching through excimer formation.86 
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To attain a high degree of charge carrier mobility, the minimum number of insulating alkyl 

chains required to impart solubility should be used. One option is the use of short, branched 

chains as a way to increase solubility while minimizing the chance of interfering with thin 

film order and π-stacking.87 The final consideration in alkyl chain selection is the thermal 

stability of the material. Increasing the number of alkyl chains tends to reduce the thermal 

stability of the material, although, the onset of thermal decomposition tends to be well 

above the operating temperature of devices.88  

 The ability to effectively transport charges is important in any material that is to be 

used in electronics. In materials for OPVs, the ability to transport charges in the solid state 

is one of the most desired properties.82 The mechanism by which organic semiconductors 

transport charges, charge-hopping, can be influenced by many properties, such as material 

shape,89 regioregularity,39 solubilizing alkyl chains,90 and, with polymers, molecular 

weight.91 In a charge-hopping mechanism, holes and electrons are transported throughout 

a film by “hopping” from one chain to the next.92-94 This charge-hopping mechanism 

results in lower mobilities and makes charge transport susceptible to charge traps caused 

by material defects, functional end-groups, and impurities, such as metal catalysts.69, 95-97 

When measured, conjugated organic materials tend to have imbalanced charge transport, 

with hole mobilities significantly higher than electron mobilities in most materials.98 While 

this is believed to be due to the electron rich nature of the organic π-systems, there is 

growing evidence that the n- or p-type properties observed in organics does not reflect the 

intrinsic abilities of the material to transport holes or electrons.99 Theoretical studies have 

suggested that the hole and electron mobilities for many organic semiconductors should be 

comparable.100, 101 Low n-type mobility is typically linked to extrinsic effects, such as the 
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instability of radical-anions with respect to water, hydroxyl groups, or oxygen, and the 

presence of specific traps for electrons that are the result of photo-oxidation of the π-

conjugated backbone.102-105 

 The relationship between solubility and charge transport is a double edged sword, as 

charge carrier ability is dependent upon the ability of the molecules to order themselves 

and the extent of π-stacking they display, both of which decrease solubility.95 A careful 

balance must be met so that materials are solution processable, yet still have strong inter-

chain interactions allowing self-assembly into well-ordered regions of π-stacked 

molecules.106 Solvent selection can have a massive impact on the resulting film 

morphology, which, in turn, impacts charge mobility.107 Due to discrepancies in how 

mobilities are measured, it can be difficult to directly correlate device performance and 

measured mobility. 

 

1.3 Organic Photovoltaics 

 In recent years, academic and public interest has shifted toward the research and 

commercialization of alternative energy sources, such as solar, wind, hydroelectric, and 

geothermal, for power generation for public utilities.108-110 The possible energy output from 

solar energy is rivaled by no other currently existing source, renewable or nonrenewable. 

More solar energy strikes Earth in an hour and a half than is consumed in a year.111 

Although the use of solar energy is slowly becoming more widespread, the upfront cost of 

photovoltaics (PVs) is still prohibitively high for many, due to the manufacturing cost and 

technical barriers that exist in large-scale commercial implementation. The high fabrication 
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costs of silicon-based PVs, which make up a majority of terrestrial devices, results in a 

high cost per kilowatt hour. 

 
Figure 1.12. Number of publications on photovoltaics and organic photovoltaics since 
1976. 

 

 In the last fifteen years, research interest in organic semiconductors for PV applications 

has exploded, as seen in Figure 1.12.112 This dramatic increase in research interest has been 

driven by the potential to replace high purity silicon with materials made from cheap, 

renewable materials; the opportunity for low-cost, large area fabrication; and the ability to 

be used in light-weight, flexible devices.6, 113, 114 This increase in research has led to the 

development of many molecular and polymer based OPVs, with high power conversion 

efficiency (PCE) well over 8%.115-122 Although the overall efficiency of OPVs has crossed 

into the realm of commercial viability, further development is needed to reduce the cost of 

devices. 
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 Original OPV architecture was based off of a very simple design comprised of a 

semiconducting organic between two electrodes. Early studies were performed on 

anthracene, metal-phthalocyanines, and chlorophyll-a, each giving low photocurrent.123-125 

Work by Delacote et al. showed an improved effect when magnesium phthalocyanines 

were placed between two different metals.126 Early work on polymeric materials were 

performed on polyacetylene and polythiophene, with limited results.127, 128 The first major 

improvement in efficiency was reported by Karg et al. in 1993, using polyacetylene 

sandwiched between semi-transparent indium tin oxide (ITO) and aluminum.129 An open 

circuit voltage (VOC) of 1 V and a PCE of 0.1% were achieved upon illumination with white 

light, and the system was further studied by Marks et al.130 and Antoniadis et al.131 

 

 
Figure 1.13. Schematic of a single layer OPV cell. 

 

A schematic of these single layer devices is shown in Figure 1.13. The differing work 

functions of the metal electrodes results in band bending of the active layer, creating an 

electric field. Photoexcitation of the organic layer by a photon promotes an electron from 

S0 → S1, generating a coulombically bound electron-hole pair, known as an exciton, due to 
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the generally low dielectric of organic materials. Due to the electric field, these excitons 

can dissociate to free holes and electrons, which then travel to the anode and cathode, 

respectfully. The potential difference, along with the created current, generates power, 

which can be utilized for energy applications.132 

 The most important factor with a PV cell, along with cost, is the overall efficiency. The 

PCE of a PV cell cannot be directly measured, therefore it is governed by a variety of 

parameters. A typical current density vs. voltage (J-V) curve is shown in Figure 1.14 with 

the critical parameters highlighted. These parameters are defined as:133 

 

Short circuit current density (JSC) – The short circuit current (ISC) per area of the cell 

surface. The ISC is the current that flows when there is no external field applied; the 

charges drift due to the internal field. ISC is determined by the number of photons 

absorbed, the quantum efficiency of charge separation, and the transport of charge 

carriers through the material. 

Open circuit voltage (VOC) – The maximum voltage delivered by the solar cell under 

illumination. At this voltage, the current is zero. The VOC is determined by the 

difference in quasi-Fermi levels of the components of the active layer. This parameter 

will be discussed in further detail later. 

Fill factor (FF) – The ratio of maximum power of the solar cell (Vm∙Jm) to the product 

of VOC and JSC. The FF is determined by the competition between sweep-out of the 

photogenerated carriers and the recombination carriers to the ground state.134 Both 

shunt (Rsh) and series (Rs) resistance can have a sizable impact on FF. 
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PCE – The ratio of maximum power generated by the cell (Pout) to the power of incident 

light (Pin). The incident light power is, usually, standardized to be equivalent to the air-

mass (AM) 1.5 solar spectrum. The AM 1.5 solar spectrum is defined as the spectrum 

of solar radiation received on the surface of the earth (100 mW cm-2). 

 
Figure 1.14. Current density vs voltage (J-V) of a solar cell, with critical parameters 
highlighted. 

 

 While capable of generating some power, single layer OPVs suffer from many 

drawbacks. One such shortcoming is the poor rate of exciton dissociation in the active 

layer. The generated electric field isn’t strong enough to dissociate the bound pair quickly 

enough, allowing them to decay, usually through recombination.135 Factors such as poor 

morphology and imbalanced charge transport also degrade PCE.136 In an attempt to 

overcome the low exciton dissociation of single layer devices, bilayer devices, with an 

active layer comprised of an electron-rich (p-type) material, with a high lying HOMO, and 

an electron-deficient (n-type) material, with a low lying LUMO, sandwiched between two 

metal electrodes, were developed.137, 138 The principal behind these bilayer devices is 
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shown in Figure 1.15. Upon excitation in the p-type material, the formed exciton can 

diffuse to the p-n interface. The lower LUMO energy of the n-type material allows for a 

greater driving force for dissociation than just the electric field, alone. For efficient 

dissociation, an energy gap of at least 0.2 eV is required.139 The newly formed free charges 

are then capable of transporting through the p-type and n-type materials, to their respective 

electrodes, generating a photocurrent. 

 

 
Figure 1.15. Mechanism of free charge generation in a bilayer photovoltaic cell. 

 

 While more efficient than single layer OPVs with their inclusion of a p-n junction, 

bilayer OPVs generally have relatively low efficiencies, particularly due to the required 

thickness of each layer. Efficient light absorption in OPVs requires an active layer, with a 

thickness of at least 100 nm, to be significantly thicker than the diffusion length of an 

exciton.139 This short diffusion length of approximately 10 nm is due to short exciton 

lifetimes.140-142 The combination of short exciton diffusion length and the need for a thick 

active layer results in excitons formed within the bulk of either material to recombine, 

decreasing quantum efficiency and, in turn, PCE. One solution to this issue is the 
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fabrication of a highly-ordered heterojunction with interdigitated donor and acceptor 

domains on the scale of 10 – 20 nm thick. This design allows for a readily available D-A 

interface for all generated excitons and pathways to each electrode. Very recently, devices 

fabricated with such architecture by nanoimprinting deterministic aperiodic nanostructures 

into each layer, resulting in a PCE of over 10% and high photocurrent.121  

 To date, the most widely used architecture for OPVs has been that of the bulk-

heterojunction (BHJ) device, first introduced by Yu et al. and Halls et al.76, 143, 144 The active 

layer in BHJ devices is formed by spin casting a blend of the donor and acceptor materials 

onto a substrate, creating an interpenetrating, single active layer with a very large D-A 

interface surface area (Figure 1.16). Optimized processing conditions, such as solvent, 

solvent concentration, spin rate, donor to acceptor ratio, solvent additives, annealing, etc., 

create an interpenetrating network of donor and acceptor running from electrode to 

electrode, allowing nearly all exciton formation to occur within 10 nm of a p-n junction. 

The use of a single active layer eliminates the need for the donor and acceptor materials to 

have different solvent profiles. Early devices achieved PCEs as high as 1.9% through the 

mixing of two polymers with different energy levels, marking a major improvement over 

previous OPVs.145  

 

 
Figure 1.16. Device architecture of bilayer (left) vs. bulk heterojunction (right) solar cells. 
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 While promising, BHJs using two different π-conjugated polymers suffered from 

various morphology issues. The use of large π-systems led to little phase separation 

between the materials, resulting in a decrease in free charges due to geminate 

recombination of excitons.146-148 Without a clear way to induce a reasonable amount of 

phase separation, BHJ solar cells would have made little progress if it were not for the 

discovery of ultra-fast electron transfer from polymers to buckminsterfullerene, C60, by 

Sariciftci et al. in late 1992.149 The ultra-fast charge transfer to fullerenes was orders of 

magnitude faster than any radiative or non-radiative pathway for decay of an exciton, 

allowing for the possibility of highly efficient OPVs. 

 Fullerenes present many properties making them ideal for use in OPVs as an n-type 

material. They possess a relatively low lying LUMO, aiding in driving electron injection 

from donor materials.150 Along with having a low lying LUMO, it is also triply-degenerate, 

allowing for the injection of six electrons. The ultra-fast electron transfer to fullerenes 

occurs on a time scale of 45 fs, orders of magnitude faster than photoluminescence or back 

electron transfer.151 This fast electron transfer allows for quickly quenching the excited 

state of the donor material, reducing the chance for photooxidation.152, 153 Lastly, fullerenes 

also possess high electron mobility, as shown with their use in OFETs, of 1.0 cm2 V-1 s-1, 

which is ideal for rapid transfer of the free charges to the cathode.154 

 One drawback of fullerenes are their low degree of solubility in organic solvents. To 

circumvent this issue, functionalized fullerenes are used. The two most popular fullerene 

isomers used are the symmetric [6,6]-phenyl-C60-butyric acid methyl ester (PC[60]BM) 

and the asymmetric [6,6]-phenyl-C70-butyric acid methyl ester (PC[70]BM), shown in 

Figure 1.17.155 PC[70]BM can be substituted for PC[60]BM easily, due to both fullerenes 
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having the same LUMO.150 The asymmetry of PC[70]BM results an increased number of 

lower energy transitions, allowing in increased absorption in the visible spectrum. The 

 
Figure 1.17. The structures of [6,6]-phenyl-C60-butyric acid methyl ester (PC[60]BM) and 
[6,6]-phenyl-C70-butyric acid methyl ester (PC[70]BM). 

 

increased absorption of PC[70]BM, along with having the same LUMO, has led to devices 

with consistently increased PCEs and is becoming the dominant acceptor used with low 

bandgap materials.  

 As appealing as PCBM is, it is not without its own disadvantages. The tendency of 

PCBM to self-assemble can lead to large domain sizes if either the PCBM or donor come 

out of solution too quickly.120, 156 If the domains become larger than the average exciton 

diffusion length, the number of excitons reaching a p-n junction will decrease, which will 

reduce the number of free charges available to generate current. In addition, fast self-

assembly may lead to domains becoming “trapped” within the other material, preventing 

free charges generated at the p-n junction of the trapped domain from reaching their 

respective electrode. There has been a large effort in developing techniques to prevent large 
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and isolated domains.157 Many processing conditions and film treatments have been 

developed and implemented with varying degrees of success. Examples include attempts 

to control self-assembly through solvent selection;107, 158-160 the use of high-boiling solvent 

additives during film casting, such as 1,8-diiodooctane and 1-chloronaphthalene;161-163 the 

development of block copolymers;164-166 the use of nanostructures to influence film 

morphology,167-169 thermal annealing,170 and incorporation of PCBM directly on to 

polymer backbones.171-173 Even with these drawbacks, to date, a better acceptor material 

for OPVs than PCBM has yet to be discovered. 

 

 
Figure 1.18. Photon flux from sunlight at the top of the atmosphere and at sea level. 

 

 The inability of PCBM to absorb much, if any, visible light means that nearly all photon 

absorption in an OPV occurs in the p-type material. To fully maximize photon absorption, 

a donor would have an absorption profile that covers as much of the visible spectrum as 
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possible, particularly in the areas of greatest photon flux. As seen in Figure 1.18, the region 

of greatest flux are in range of 500 – 900 nm, with the peak at approximately 700 nm, with 

the number of photons trailing off until around 1400 nm. To fully utilize the high density 

of photons, the donor material must have a bandgap below 1.7 eV. These narrow bandgaps 

lead to an increased number of excitons generated, resulting in the generation of more 

potential charge carriers, and an increase in JSC, improving PCE.174 As mentioned in the 

previous section, the bandgap can be tuned, through synthetic modifications to the donor 

material, by raising the HOMO and/or lowering the LUMO, which also impacts the 

absorption profile.53, 175 The final location of the HOMO and LUMO is vital to the 

efficiency of the resulting OPV. 

 In OPVs, the location of the HOMO and LUMO impacts more than just the size of the 

bandgap; some of the critical parameters of the BHJ solar cell are determined by their 

position. The LUMO of the donor material, as previously mentioned, needs to be at least 

0.2 – 0.3 eV higher than that of PCBM to effectively drive electron transfer between the 

two materials, as well as an efficient Schottky barrier to prevent back electron transfer into 

the LUMO of the donor.176-178 Efficient electron injection as well as electron transport 

through the BHJ have been found to be the limiting parameter toward high PCE in OPV 

devices.179 The other critical parameter heavily influenced by energy level position is VOC. 

The VOC can be approximated by Equation 1.1: 

 

𝑉𝑉OC ≈ (1/𝑒𝑒) (𝐸𝐸LUMO
acceptor − 𝐸𝐸HOMOdonor) + (𝑘𝑘𝐵𝐵𝑇𝑇/𝑒𝑒) ln �𝑛𝑛𝑒𝑒𝑛𝑛ℎ

𝑁𝑁𝑐𝑐2
�,                (1.1) 
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where e is the electron charge; kB is the Boltzmann constant; T is the absolute temperature; 

ne and nh are the electron and hole densities, respectively; and Nc is the density of states 

near the acceptor LUMO and the donor HOMO, which are assumed to be equal.180 The 

third term in Equation 1.1, which accounts for the temperature dependence of VOC, is 

approximately 0.3 V, giving Equation 1.2.181 

 

𝑉𝑉OC ≈ (1/𝑒𝑒) (𝐸𝐸LUMO
acceptor − 𝐸𝐸HOMOdonor) − 0.3 V                                (1.2) 

 

While obtaining a very high VOC is possible, doing so is not without drawbacks. As VOC 

increases, the HOMO of the donor material decreases. Since the LUMO of the donor must 

remain at least 0.3 eV greater than the LUMO of the acceptor, decreasing the HOMO of 

the donor material widens the bandgap of the material, as illustrated in Figure 1.19. There 

have been attempts to alter the LUMO of PCBM through structural modification, for 

example the popular indene-C60 bisadduct (ICBA), but they have led to mixed results, due 

to the change in packing and crystallinity compared to PCBM.182-186 Ultimately, a balance 

of a large LUMOacceptor – HOMOdonor gap (increase VOC), narrow bandgap, and adequate 

LUMOdonor – LUMOacceptor difference (promote exciton dissociation) is required to 

maximize PCE. 
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Figure 1.19. Impact of raising the donor HOMO on VOC and bandgap (Eg). 

 

1.4 Design Rules for High Efficiency Solar Cells 

 As previously discussed, the general mechanism of charge generation in an OPV is 

comprised of four steps: (1) light absorption and exciton formation, (2) exciton migration 

to a p-n junction, (3) charge separation, and (4) charge transport and collection. The active 

layer of OPVs, having a low carrier mobility and high absorption coefficient, tend to have 

a thickness of around 100 nm. Organic semiconductors, with their low dielectric constants, 

form excitons upon photon absorption, therefore the active layer must be composed of a 

interpenetrating network of donor material and PCBM to maximize exciton dissociation. 

Control of the morphology of these BHJs is essential for high performance OPVs. 

 The magnitude of the donor bandgap determines how much light can absorbed. A 

material with a bandgap of 1.1 eV (1100 nm) has the potential to harvest nearly 77% of the 

solar photons at sea level, whereas many semiconducting organics, having bandgaps over 

2 eV (620 nm), can only absorb 30% of solar photons.176 To achieve high PCE values in 
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OPVs, the tuning of energy levels, as well as the solubility, of the donor is of the utmost 

importance. Both solubility and energy levels can be tuned by attaching various 

substituents to the polyaromatic backbone, altering the morphology in the solid state and/or 

the electronics of the material. Several building blocks that have been used in high 

performance materials are shown in Figure 1.20. 

 The use of fused heterocycles can have multiple benefits. As mentioned in section 1.2, 

the addition of fused aromatic units outside of the main conjugation pathway, such as with 

PITN, can help stabilize the quinoidal mesomeric structure, resulting in a very low 

bandgap. The electron-deficient building block thieno[3,4-b]thiophene (TT) is the most 

 
Figure 1.20. Common building blocks in high performance OPV materials. 

 

widely used and successful building block possessing this type of structure. The use of TT 

with the electron rich benzodithiophene (BDT) has led to a series of materials with PCEs 

over 5% called PTBs.187-189 Use of the electron-deficient 2,1,3-benzothiadiazoles (BT) has 

resulted in numerous high performance materials with optimized efficiencies in the range 
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of 5-7%.190-197 An added benefit of fused rings is the increased coplanarity, which aides in 

increased π-overlap and increased delocalization. For example, the use of two fused BTs 

lead to an enhanced OPV performance from 2.1% to 6.0% for the fused 

naphthobisthiadiazole.198, 199 

 The incorporation of a fluorine atom has shown many benefits. The strong electron 

withdrawing ability of fluorine, due to its high electronegativity, and similar size to 

hydrogen has led to materials with drastically different properties. The biggest benefit is 

that the substitution of one fluorine for a hydrogen along the backbone of a material can 

tune the energy levels of the material without introducing additional steric hindrance. It has 

been observed that, in polymers, the HOMO and LUMO of the donor material drop with 

the addition of fluorine, and the HOMO drops by approximately 0.1 eV per fluorine in the 

repeat unit.189, 200-202 Unfortunately, the effect of fluorination is significantly more 

complicated than merely altering energy levels. Fluorination has a large impact on the 

dipole moment changes between the ground state and excited state and fullerene 

compatibility. Yu et al. established a relationship between the magnitude of dipolar change 

in materials containing fluorinated-TT, and the resulting performance in OPVs.203, 204 

Further studies on fluoro- and difluoro-BT containing materials have shown similar results, 

with increased change in dipole giving higher PCEs.202, 205-208 

 As previously stated in this chapter, the use of insulating alkyl side chains is required 

to make materials that are solution processable. While this does somewhat limit charge 

transport, this also opens the possibility of utilizing further substituent effects. These 

substitutions can be used as effective ways of perturbing molecular orbitals or fine tuning 

the solubility of a material. The substitution of the alkyl chain on BDT for an alkoxy side 
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group has resulted in a decrease of 0.1 eV in the HOMO of PTB polymers.189 The use of 

5-alkylthienyl groups has led to even larger decreases in the HOMO level and resulted in 

high efficiency materials through improved π-stacking.209-212 Choice of substituent can also 

influence physical properties of materials including phase behavior, charge transport 

properties, and structural order.87 While branched alkyl chains impart higher solubility, 

they can have a large effect on π-π stacking and charge mobility as large branched chains 

can lengthen p-p stacking distance, reducing mobility.87, 213 Electron-deficient building 

blocks such as diketopyrrolopyrrole, thienopyrroledione, and TT bearing an ester group 

offer opportunities for side chain modification with relative ease.4, 214, 215 

 The final structural modification that is commonly used is the incorporation of a 

bridging atom between two aromatic rings. These bridging atoms rigidify the material, 

leading to a smaller chance of twisting. The most popular choice for bridging atoms are the 

group 14 atoms C, Si, and Ge. As the atomic radii increases going down the group, the 

ionization energy decreases.216 Use of Si and Ge, as opposed to C, have led to increased 

structural order in films. Unlike C, the σ*-orbitals of Si and Ge overlap with the π-orbitals 

of the flanking aromatic rings and are able to play a part in aromaticity and act as an internal 

acceptor in a D-A-D fashion within a building block.217, 218 

 Compared to synthetic alterations, there are relatively few general strategies toward 

device optimization. Very low concentrations of solvent additives can have a drastic impact 

on the nanoscale morphology of the active layer. Use of additives such as 1,8-diiodooctane 

and 1-chloronaphthalene can help increase the solubility of the fullerene or polymer, 

respectively, leading to an increase in short circuit current density and fill factor.162, 219-222 

The use of interfacial layers, such as the hole transport layer PEDOT:PSS or the electron 
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transporting lithium fluoride can drastically improve performance and help align energy 

levels with the anode and cathode, respectively.223 These interfacial layers help prevent 

reactions with the metal electrodes, which can cause the formation of an insulating buffer 

layer, and diffusion of the metals into the active layer.224 Conjugated polyelectrolytes, with 

the benefit of being solution processable, have also been utilized effectively as electron 

transport materials in high efficiency OPVs.178, 225-228 

 

1.5 Conclusions 

 In summary, many important considerations must be made when designing p-type 

materials for organic photovoltaic applications: 

 

• Bandgap 

o Caused by Peierls distortion. 

o Minimized by increasing effective conjugation length. 

 Stabilizing the mesomeric quinoid form decreases the bandgap. 

 Increased by decreasing steric twists in the π-backbone. 

• Increased planarity achieved through fused aromatic rings or 

bridging atoms. 

o Fine-tuned utilizing donor-acceptor perturbation of MOs. 

 HOMO primarily determined by donor. 

 LUMO primarily determined by acceptor. 

o Sufficiently narrow (<1.8 eV). 

 Broad absorption over the solar spectrum. 
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 Maximize number of photons absorbed. 

 Increases JSC by increasing quantum efficiency. 

 

• Appropriate HOMO and LUMO energy levels. 

o HOMO and LUMO can be adjusted by addition of EWG or EDG. 

o Inclusion of fluorine atoms lower both HOMO and LUMO. 

o HOMO as low as possible to maximize VOC. 

o LUMO within 0.2 – 0.4 eV of PCBM to promote efficient electron transfer. 

o Close enough to guarantee a narrow bandgap. 

o HOMO below 5.2 eV for oxidative stability.229 

 

• Good film forming properties 

o Ordered films increase charge mobility. 

o Selective use of side chains to balance π-π stacking and solubility. 

 Short linear chains increase crystallinity while reducing solubility. 

 Branched chains can disrupt π-π stacking while increasing 

solubility. 

 Alkyl chain density can negatively impact charge mobility. 

o Inclusion of heteroatoms (Si, Ge, etc.) can increase inter-chain π-stacking. 

o Increased planarity improves π-stacking and charge mobility. 

 

• Forms sufficiently sized domains when blended with PCBM. 
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o Domains approximately 15 – 20 nm in size to allow efficient exciton 

migration to p-n junction. 

o Interpenetrating network necessary to maximize free charge collection. 

 

The overall performance of a material is intimately tied to all of the parameters 

discussed in this chapter in such a way that the change of one aspect of a material can lead 

to numerous consequences in all other aspects. Until our understanding of these relation-

ships is more complete, widespread commercialization will remain just out of reach. 
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2.1 Abstract 

A donor-acceptor-type conjugated copolymer (PBDT-PPD) composed of 

benzodithiophene (BDT) and pyrrolopyrroledione (PPD) was synthesized using the Stille 

cross-coupling reaction. Using both experimental and theoretical data, the optical, 

electrochemical, and photovoltaic properties of PBDT-PPD were compared with those of 

its sulfur analog, PBDT-TPD, which is composed of BDT and thienopyrroledione (TPD). 

The optical bandgaps of the polymers were determined to be 1.86 and 2.20 eV, 

respectively. While both materials possessed similar highest occupied molecular orbital 

(HOMO) levels, the lowest unoccupied molecular orbital (LUMO) level for PBDT-PPD 

was raised relative to that of PBDT-TPD. Devices incorporating PBDT-PPD had a higher 

open-circuit voltage and fill factor, yet drastically lower short-circuit current density (Jsc) 

than PBDT-TPD leading to a lower power conversion efficiency (PCE). The lack of 

significant intramolecular charge transfer (ICT) combined with the high LUMO of 

PBDT-PPD resulted in poor spectral overlap with the solar spectrum, lowering Jsc. 

Additionally, there was poor electron injection into PCBM, which also reduced the PCE. 

 

2.2 Introduction 

Since the discovery of the first semiconducting polymer nearly 40 years ago, research 

involving conjugated polymers has been on the rise. In particular, studies involving bulk 

hetero-junction (BHJ) organic photovoltaic solar cells (OPVs), has increased 

exponentially due to their potential low cost production, and use in lightweight, flexible 

devices.1-9 Although improvements in materials and fabrication techniques have led to 



www.manaraa.com

52 
 

dramatic increases in OPV performance, as determined by the power conversion 

efficiency (PCE), a better understanding of structure-property relationships is still 

desired.10-11 The synthesis of conjugated polymers, comprised of alternating π-electron 

rich and π-electron deficient arylene units, allows for the selective tuning of optical and 

electronic properties of the material.12-14 This “donor-acceptor” strategy has given rise to 

a variety of materials with desirable properties, such as broad optical absorption bands, 

deep HOMO energy levels, high charge carrier mobilities, and LUMO levels with 

appropriate alignment to [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM).8, 15 In 

addition, these materials can be further tuned by varying the heteroatoms within the 

arenes. Indeed, a dramatic impact on the physical, optical, and electronic properties of a 

material can be achieved through heteroatom substitution.8, 16 For example, large changes 

in optical absorption and solubility of many materials have been observed upon replacing 

of thiophene with the iso-electronic furan or selenophene.16-19 While substitution within a 

group (e.g. the group 16 chalcogens) can at often times have predictable effects, the 

impact of substitution between groups is often less straightforward.16, 20-21  

 The thiophene containing thieno[3,4-c]pyrrole-4,6-dione (TPD) unit has been used as 

an π-electron deficient moiety in a variety of high efficiency donor-acceptor 

copolymers.22-24 When polymerized with the π-electron rich benzodithiophene (BDT), 

BHJ OPV performance as high as 5.5% for 1.0 cm2 devices (PBDT-TPD) has been 

reported.22 When the thiophene was replaced with furan (FPD), a widening of the optical 

bandgap was observed, whereas switching with selenophene (SePD) resulted in a 

reduction of the optical bandgap, relative to TPD.25 OPVs fabricated from the SePD 

based polymer showed a greatly reduced short-circuit current density (Jsc), which resulted 
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in a very low PCE of 0.26%.26 Although an improvement in performance has not been 

seen with FPD or SePD, exploration outside of the group 16 elements has yet to be 

researched extensively. 

 A seldom studied alternative to TPD is the nitrogen analog pyrrolo[3,4-

c]pyrroledione (PPD), first reported in 1996.27 While, the additional alkyl chain on the 

nitrogen atom of PPD can potentially increase solubility, the impact of replacing sulfur 

with nitrogen is not well understood. Recently, PPD was used in a series of donor-

acceptor copolymers with varying results, and there was no direct structural comparison 

to known high performing TPD based materials.28 Here, a PPD based copolymer was 

synthesized, characterized and compared to the structurally analogous PBDT-TPD. In 

addition to the physical methods, we also evaluated both polymers through density 

functional theory. 

 

2.3 Results and Discussion 

2.3.1 Synthesis and characterization of monomer and polymers 

The PPD monomer 6 was prepared according the synthetic route as illustrated in 

Scheme 2.1.27 Diethyl pyrrole-3,4-dicarboxlyate was formed by condensation of diethyl 

fumarate and p-toluenesulfonylmethyl isocyanide followed by saponification to the 

dicarboxylic acid, 2. Compound 2 was then converted to the corresponding anhydride by 

treatment with N,N’-dicyclohexylcarbodiimide, which was ring opened with n-

octylamine, and closed with thionyl chloride to give 4. The unalkylated 4 was then 

brominated using NBS in the dark. Compound 5 was then alkylated, in a fashion similar 
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to its structural isomer diketopyrrolopyrrole, in DMF with potassium carbonate, 1-

bromooctane, and 18-crown-6 to give the final PPD monomer, 6, in moderate yield. 

 

 

Scheme 2.1. Synthesis of PPD monomer 6. 

Alternating copolymers were synthesized by Stille cross-coupling of the diarylhalide 

monomers (PPD or TPD) and the distannyl BDT monomer in anhydrous toluene, as 

shown in Scheme 2.2. The molecular weight data for PBDT-TPD and PBDT-PPD were 

determined by size exclusion chromatography in chloroform against polystyrene 

standards. Both materials had reasonable number averaged molecular weights (Mn) of 

24.9 19.8 kDa for PBDT-TPD and PBDT-PPD, respectively. The TPD based polymer, 

PBDT-TPD, had poor solubility in organic solvents at room temperature, but was readily 

dissolved in chlorobenzene and 1,2-dichlorobenzene when heated, as reported by Leclerc 

et al.22 The PPD based polymer, PBDT-PPD, had greatly improved solubility and was 

readily dissolved in chloroform, chlorobenzene, and 1,2-dichlorobenzene at room 

temperature. The increased solubility of PBDT-PPD is likely due to the lower degree of 

polymerization (DPn) and the additional solubilizing alkyl chain on the nitrogen. 
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Scheme 2.2. Synthesis of donor-acceptor copolymers PBDT-TPD and PBDT-PPD. 

 

Table 2.1. Molecular weight and thermal properties of the synthesized polymers. 

Polymer Yielda 

(%) 
Mn

b 

(kDa) 
Mw

b 

(kDa) Đc DPn 
Td5%d 

(°C) 
PBDT-TPD 82 24.9 44.8 1.8 35.1 333.7 
PBDT-PPD 73 19.8 33.6 1.7 24.6 337.8 

aIsolated yield. bDetermined by GPC vs polystyrene standards in chloroform. cDispersity: 
Mw/Mn. dTemperature at 5% weight loss with a heating rate of 20 °C min-1 under 
nitrogen. 

 

The thermal stabilities of the polymers were evaluated using TGA under air (Figure 

S2.15, Supporting Information). PBDT-TPD and PBDT-PPD demonstrated good 

thermal stability when heated, with a 5% weight loss at 333 and 337 °C, respectively. 

Differential scanning calorimetry (Figure S2.16, Supporting Information) revealed no 

phase transitions for PBDT-PPD below 250 ° C. The molecular weights and thermal 

properties of PBDT-TPD and PBDT-PPD are summarized in Table 2.1. 

 

2.3.2 Optical and electrochemical properties 

The optical properties of the polymers were investigated using UV-Vis absorption 

spectroscopy. The normalized absorption spectra of the polymers, both as dilute 

chloroform solutions and thin films on glass substrates, are shown in Figure 2.1 and 2.2, 
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respectively. PBDT-TPD had a broad absorption from 350 – 650 nm in dilute solution 

with two peaks of nearly equal intensity at 552 and 627 nm, with a third slightly smaller 

peak at ~590 nm. The intensities of the broad low energy transition suggests 

intramolecular charge-transfer (ICT) interaction between the electron-rich BDT and the 

electron-deficient TPD moieties.29 In solution PBDT-PPD displayed a λmax of 526 nm 

with a narrower and significantly blue shifted absorption range of 350 – 550 nm, relative 

to PBDT-TPD. Strong vibronic coupling can be seen in PBDT-PPD, suggesting the 

formation of aggregates in solution. 

As a thin film, PBDT-TPD showed very little change in absorption when compared 

to its solution spectra, with a λmax of 624 nm. A slight decrease in the intensity of the 

higher energy maximum and an increase in the intensity of vibronic coupling was also 

seen, with the vibronic coupling indicating highly ordered thin films.30 Interestingly, the 

thin film of PBDT-PPD, had a λmax of 533 nm, with a reduction in intensity, and a 

significant narrowing of the absorption range by a decrease of the π-π* transitions of the 

conjugated main chain. A comparison of the absorption profiles of the two polymers 

shows PBDT-TPD has a stronger absorption intensity across nearly all wavelengths and 

a significantly broader absorption of 350 – 675 nm, versus the 350– 550 nm range of 

PBDT-PPD. The optical bandgaps were determined from the absorption onsets of the 

polymer films. The measured optical bandgaps for PBDT-TPD and PBDT-PPD were 

1.86 eV and 2.20 eV, respectively. The narrow absorption range of PBDT-PPD and the 

wide bandgap suggest there is little, if any, ICT occurring between the BDT and PPD 

moieties.31-33 The optical data is summarized in Table 2.2. 
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Figure 2.1. Normalized UV-vis spectra of PBDT-TPD and PBDT-PPD in CHCl3. 

 
Figure 2.2. Normalized UV-vis spectra of PBDT-TPD and PBDT-PPD thin films. 
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Table 2.2. Optical and electrochemical properties of the synthesized polymers. 

Polymer 𝜆𝜆maxsoln 
(nm)a 

𝜆𝜆maxfilm  
(nm) 

Eg
opt 

(eV)b 
𝐸𝐸HOMO 
(eV)c 𝐸𝐸LUMO (eV)d Eg

EC e 

(eV) 

PBDT-TPD 552, 627 624 1.86 -5.50 -3.54 1.96 
PBDT-PPD 526 533 2.20 -5.50 -3.10 2.40 

aMeasured in chloroform. bMeasured from the optical onset. cHOMO = -(𝐸𝐸onsetox  + 4.7)eV; 
dLUMO = -(𝐸𝐸onsetred  - 4.7)eV; eEg

EC = LUMO – HOMO. 

 

Cyclic voltammetry was used to investigate the redox behavior and to estimate the 

HOMO energy levels of the polymers. The HOMO and LUMO energy levels were 

calculated from the oxidation onset using the adjusted energy level of 

ferrocene/ferrocenium (Fc/Fc+) as -4.7 eV vs vacuum and are summarized in Table 2.2. 

Both polymers exhibited reversible reduction and irreversible oxidation peaks 

(Supporting Information). The HOMO energy level for both PBDT-TPD and PBDT-

PPD were found to be -5.50 eV, while the LUMO energy levels were found to be -3.54 

eV and -3.10 eV, for PBDT-TPD and PBDT-PPD respectively. The electrochemical 

bandgaps of 1.96 eV for PBDT-TPD and 2.40 eV for PBDT-PPD are in agreement with 

the optical bandgaps.34 While both materials had the same HOMO level, the significantly 

higher LUMO level and narrowing of the optical absorption of PBDT-PPD reinforce the 

suspicion that little intramolecular charge transfer along the polymer backbone. To 

further investigate this possibility, DFT calculations were performed. 
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2.3.4 Computational Studies  

Density functional theory was used to evaluate the differences in the performance 

between PBDT-TPD and PBDT-PPD. Although, the improved performance of OPVs 

based PBDT-TPD can be attributed to the smaller band gap and a lower lying LUMO 

level relative to PBDT-PPD, other factors may be involved. Upon completion of the 

DFT calculations, the frontier orbitals and electrostatic potential maps were generated 

(Figure 2.3). For PBDT-TPD, the terminal TPD ring is electron deficient in the HOMO 

and becomes rich in electron density in the LUMO. The opposite trend occurs for the 

BDT ring, which is electron rich in the HOMO and electron deficient in the LUMO. This 

trend indicates there may be some donor-acceptor behavior within this system, but it 

appears to be localized. Whereas in PBDT-PPD there is complete delocalization of 

electron density in the HOMO and again an absence on the BDT ring in the LUMO hence 

this polymer exhibits less donor-acceptor behavior. Thus, the decrease in ICT in the 

PBDT-PPD is a contributing factor in its poor performance. 

 

Table 2.3. Comparison between theoretical and experimental values. 

 
HOMO (eV) LUMO (eV) Bandgap (eV) 

DFT Expt Diff DFT Expt Diff DFT Expt Diff 

PBDT-
TPD -5.21 -5.50 0.29 -3.09 -3.54 0.45 1.82 1.86 0.04 

PBDT-
PPD -5.15 -5.50 0.35 -2.38 -3.10 0.72 2.42 2.20 0.22 
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Figure 2.3. DFT calculated frontier orbital and electrostatic potential maps. 

A comparison between the experimental electrochemical results and the theoretical 

data is shown in Table 2.3. An absolute difference of 0.35 eV and 0.22 eV was found in 

the HOMO and band gap respectively, indicating there is good agreement between the 

two data sets. In order evaluate the potential for charge transfer within these copolymers 

the reorganization energy for both the hole and the electron was computed and shown in 

Table 2.4. This energy was generated for both the individual subunits as well as the 

comonomer in each case. In the case of PBDT-TPD, the BDT subunit had a much lower 

reorganization energy for electron than for the hole indicating it takes less energy for this 

ring to accept a negative charge than it does for a positive charge. The opposite is true for 

TPD in which the hole reorganization energy is lower than that of the electron. Putting 

the two subunits together and making a comonomer shows that the material behaves 

more favorably as an acceptor than a donor. For the PBDT-PPD copolymer, the PPD is 

more accepting than donating in nature as indicated by the reorganization energy. Like 

PBDT-TPD, PBDT-PPD is an also electron-accepting material. Overall, all of these 

reorganization energies are quite high and so while trends can be suggested based on their 
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magnitude it is doubtful either of these copolymers would be able to charge-transfer at a 

reasonable rate. 

 

Table 2.4. Reorganization energies (in eV) for the subunits and their monomers. 

 BDT PPD TPD PBDT-TPD PBDT-PPD 

λh 
a 0.838 0.399 0.400 0.762 0.798 

λe 
b 0.337 0.478 0.476 0.414 0.445 

aHole reorganization: λh. bElectron reorganization: λe. 

 

2.3.5 Photovoltaic properties  

Photovoltaic devices were fabricated with the structure 

ITO/PEDOT:PSS/donor:PC71BM/Ca/Al, where ITO is indium tin oxide and PEDOT:PSS 

is poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate). Characteristic J–V curves 

are shown in Figure 2.4 and the resulting data is summarized in Table 2.5. Solutions were 

cast from a 25 mg mL-1 total blend concentration in chlorobenzene using a ratio of 1:2 

polymer:PC71BM w/w. Spin-rates ranging from 1000 rpm to 1400 rpm were examined. 

The best devices of PBDT-TPD gave a PCE of 2.5%, with an open-circuit voltage (VOC) 

of 0.68 V, a short-circuit current density (JSC) of 7.98 mA cm-2, and a fill factor (FF) of 

46%, while the best devices of PBDT-PPD gave a significantly lower PCE of 0.63%, 

VOC of 0.87 V, JSC 1.3 mA cm-2, and a FF of 57%. 

In an effort to further improve the poor performance of PBDT-PPD, devices were 

fabricated with the use of small quantities of the high boiling solvent additives 1-



www.manaraa.com

62 
 

chloronaphthalene (CN) and 1,8-diiodooctane (DIO) at 5% v/v. In general, devices made 

from solution with additives had higher PCE in comparison to the ones without additives. 

Devices fabricated using CN as an additive gave a maximum PCE of 0.83%, an average 

PCE of 0.72%, VOC of 0.66 V, JSC of 2.5 mA cm-2, but a greatly reduced FF of 44%. The 

devices using DIO gave a significantly higher maximum PCE of 1.34% and an average of 

1.23%, VOC of 0.76 V, JSC of 3.9 mA cm-2, but also had a low FF of 42%. While 

improvement was observed using solvent additives, the overall photocurrent remained 

very low. 

 

 

Figure 2.4. J – V curves of PBDT-TPD and PBDT-PPD devices. 
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Table 2.5. Summary of the characteristics of photovoltaic devices. 

Polymera Additiveb JSC 
(mA cm-2) 

VOC 
(V) 

FF 
(%) 

PCEave
e 

(%) 
PCEmax 

(%) 
PBDT-TPD -- 7.8 0.69 45 2.44 2.51 

PBDT-PPD -- 1.3 0.87 52 0.59 0.63 

 DIOc 3.9 0.76 42 1.23 1.34 

 CNd 2.5 0.66 44 0.72 0.83 

aFabricated at a 1:1.5 weight ratio of polymer:PC71BM with a total solution concentration 
of 25 mg mL-1. b5% v/v. c1,8-diiodooctane. d1-chloronaphthalene. eAverage of six 
devices. 

 

The surface roughness and phase distribution of the polymers were studied by atomic 

force microscopy (AFM) (Fig. 4). The AFM roughness maps of PBDT-TPD:PC70BM and 

PBDT-PPD:PC70BM neat thin-films show large domain sizes with root-mean square 

surface roughness (RMS) values of 3.99 and 5.17 nm, respectively. Whereas the AFM 

height images reveal smooth topography for both polymers with root-mean square (RMS) 

surface roughness values less than 1.30 nm. The JSC of the PBDT-PPD device increased 

from 1.3 mA cm-2 to 3.9 and 2.5 mA cm-2 upon using as solvent additives of DIO and 

CN, respectively. This enhancement in JSC is a result of the reduction in the domain size 

within the morphology of PBDT-PPD-based thin-films with solvent additives as seen in 

AFM images (Figure 2.5 and 2.6). The films with additives have small grain sizes with 

slight variation in the surface roughness (RMSDIO = 5.59 nm, and RMSCN = 4.25 nm). 

This change morphology is beneficial for suppressing the charge recombination and 

better charge transport and dissociation is achieved. 
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Figure 2.5. AFM height (left) and phase (right) images at 5 µm x 5 µm of PBDT-
TPD:PC71BM (a-b), PBDT-PPD:PC71BM (c-d) thin-films. 

 
 

   

   
Figure 2.6. AFM height (left) and phase (right) images at 5 µm x 5 µm of PBDT-
PPD:PC71BM with 5% DIO (a-b) and 5% CN (c-d) solvent additives. 

a) b) 

c) d) 

a) b) 

c) d) 

Roughness                                         Phase 

Roughness                                         Phase 
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The hole mobility of PBDT-TPD and PBDT-PPD were examined using the space-

charge limited current (SCLC) method with a hole only device structure of 

ITO/PEDOT:PSS/polymer:PC71BM/MoOx/Al. The mobilites were calculated according 

to the equation: 

 

𝐽𝐽𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 9
8
ε𝒐𝒐𝜀𝜀𝑟𝑟𝜇𝜇ℎ(𝑉𝑉2/𝐿𝐿3) ,       (2.1) 

 

where εo is the zero-field mobility, εr is the permittivity of the material, μh is the carrier 

mobility, V is the effective voltage, and L is the thickness of the active layer. The hole 

mobilities were determined to be 4.36 × 10-6 for PBDT-TPD and 1.31 × 10-5 cm2 V-1 s-1 

for PBDT-PPD. The hole-only current-voltage characteristics are shown in Figure 2.7. 

 
Figure 2.7. The current-voltage characteristics of PBDT-TPD:PC71BM and PBDT-
PPD:PC71BM photovoltaic devices in dark under ambient conditions. 
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Since the PBDT-PPD blend has a higher mobility and more favorable morphology 

than the PBDT-TPD blend, one of the most likely causes for the low photocurrent of 

PBDT-PPD is the absorption profile of the material having poor overlap with the solar 

spectrum.30 Additionally, the high LUMO of PBDT-PPD may have too high of an offset 

with that of PC71BM, leading to recombination in the donor due to the poor rate of 

electron injection into the acceptor.31 

 

2.4 Conclusions 

A novel conjugated polymer, PBDT-PPD was synthesized and compared to the well-

known sulfur analog PBDT-TPD. Both polymers were used in OPVs and it was found 

that PBDT-PPD performed worse than PBDT-TPD. Experimental and theoretical 

studies on the optoelectronic properties of these polymers demonstrated that PBDT-PPD 

had a lower electron affinity and wider optical bandgap than PBDT-TPD. Furthermore, 

the ICT was weaker in PBDT-PPD than in PBDT-TPD, and neither material was a 

particularly good donor polymer. Collectively, these results suggest that replacing sulfur 

with nitrogen in pyrrole dione monomers could be a good strategy for designing efficient 

OPV materials, however a different electron-donating group should be explored. 

Research is ongoing in our group to improve upon these results. 
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2.5 Experimental 

2.5.1 Materials 

Air- and moisture- sensitive reactions were performed using standard Schlenk 

techniques. Solvents used for palladium-catalyzed reactions were deoxygenated prior to 

use by sparging with argon for 30 minutes. The preparation of compounds 6 and 8 are 

described in the Supporting Information. (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-

b']dithiophene-2,6-diyl)bis(trimethylstannane) (BDT)35 was prepared according to 

literature procedures. Thiophene-3,4-dicarboxylic acid was purchased from Oakwood 

Chemicals and recrystallized from water before use. All other chemical reagents were 

purchased commercially and used without further purification unless otherwise noted. 

 

2.5.2 Characterization 

Nuclear magnetic resonance (NMR) spectra were collected on Varian VXR-300, 

Varian MR-400, or Bruker Advance III-600 spectrometers. 1H NMR spectra were 

internally referenced to the residual solvent peak. In all spectra, chemical shifts are given 

in ppm (δ) relative to the solvent. Gel permeation chromatography (GPC) measurements 

were performed on a Shimadzu Prominence GPC with two 10 µm AM Gel columns 

connected in series (guard, 10,000 Å, 1,000 Å) in chloroform at 40 °C relative to 

polystyrene standards. Thermogravimetric analysis (TGA) were performed over an 

interval of 30 – 850 °C at a heating rate of 20 °C min-1 under ambient atmosphere. 

Differential scanning calorimetry (DSC) was performed using a first scan heating rate of 

15 °C min-1 to erase thermal history and a second scan to measure transitions between 0 

and 330 °C under nitrogen. Cyclic voltammetry (CV) measurements were carried out 
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using an e-DAQ e-corder 410 potentiostat with a scanning rate of 100 mV s-1. The 

polymer films were dropcast from 1 – 2 mg mL-1 solutions in chlorobenzene onto a 

platinum working electrode. Ag/Ag+ and Pt wire were used as the reference and auxiliary 

electrodes, respectively. The reported values were referenced to Fc/Fc+ (-4.8 versus 

vacuum). All electrochemical experiments were performed in deoxygenated acetonitrile 

under an argon atmosphere using 0.1 M tetrabutylammonium hexafluorophosphate as 

electrolyte. Absorption spectra were obtained on a photodiode-array Agilent 8453 UV-

visible spectrophotometer using polymer solutions in CHCl3 and thin films. The films 

were cast by spin coating 25 x 25 x 1 mm glass slides using solutions of polymer (2.5 – 

5.0 mg mL-1) in CHCl3/o-dichlorobenzene at a spin rate of 1200 rpm on a Headway 

Research, Inc. PWM32 spin-coater. A Veeco Digital Instruments atomic force 

microscope was used to capture the surface roughness and phase of PBDTTPD- and 

PBDTPPD-based thins films . The tapping-mode AFM was carried out using TESPA tip 

with scan rate of 0.6 μm sec-1 and scan size of 5 μm x 5 μm 

 

2.5.3 Computational modeling 

To elucidate the difference in performance between PBDT-TPD and PBDT-PPD we 

performed theoretical calculations using density functional theory (DFT). The geometries 

of model oligomers (n = 1, 2, 3, and 4) for both copolymers were optimized at the 

B3LYP/6-31G* level in which the long side chains were truncated to methyl groups in 

order to save computational expense. The first ten excited states were determined through 

a time dependent density functional theory treatment using the same level of theory as the 
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optimization. The HOMO, LUMO, and optical band gaps were produced by fitting the set 

of oligomers with the Kuhn expression:36-37 

 

                                                 𝐸𝐸 =  𝐸𝐸0�1 + 2 𝑘𝑘′

𝑘𝑘0
 𝑐𝑐𝑐𝑐𝑐𝑐 𝜋𝜋

𝑁𝑁+1
                                         (2) 

 

where 𝐸𝐸0 is the transition energy of a formal double bond, N is the number of double 

bonds in the oligomer (thought to be identical oscillators), and 𝑘𝑘′ 𝑘𝑘0⁄  is an adjustable 

parameter (indicative of the strength of coupling between the oscillators). In addition, the 

reorganization energy, which is a measure of charge mobility for both the hole (λh) and 

electron (λe), was calculated using:38-41 

 

                                              𝜆𝜆 = (𝐸𝐸0∗ −  𝐸𝐸0) + (𝐸𝐸±
∗ −  𝐸𝐸±)                                       (3) 

 

where 𝐸𝐸0 and 𝐸𝐸±  are the energies of the neutral and charged optimized geometries and 

the 𝐸𝐸0∗ and 𝐸𝐸±0
∗  are the energies of neutral geometry with charge and the charged 

geometry set to neutral. 

 

2.5.4 Fabrication of photovoltaic devices 

All devices were produced via a solution-based, spin-casting fabrication process. All 

polymers were mixed with PC70BM (1-material) (mixed 1:1.5 with a total solution 

concentration of 25 mg mL-1) dissolved in chlorobenzene (Sigma Aldrich) and stirred 

overnight at 115 °C at 800 rpm. ITO (sheet resistance: 5 – 15 Ω �-1) coated glass slides 

(Delta Technologies) were cleaned by consecutive 10 minute sonication in (i) Alconox 
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detergent (dissolved in deionized water), (ii) deionized water, and then (iii) isopropanol. 

The slides were then dried with N2 and cleaned with air plasma for 10 minutes. Filtered 

(0.45 μm) PEDOT:PSS (Clevios PTM 4083) was spin-coated onto the prepared substrates 

(5000 rpm/60 sec) and then annealed at 120 °C for 20 minutes. After cooling, the 

substrates were transferred to an argon-filled glovebox. The polymer:PC70BM solutions 

were filtered with 0.2 μm pore filter, and simultaneously dropped onto the PEDOT:PSS-

coated substrates and spin-cast at 1400 rpm for 60 seconds. The films were dried under 

petri-dish for eight hours. For the active layers with solvent additives, 5% (v/v) of either 

CN or DIO was added to the stock solution, and then deposited at the aforementioned 

casting conditions. Finally, Ca (20 nm) and Al (100 nm) were thermally evaporated 

through a shadow mask (area = 0.1256 cm-2) under vacuum of 10-6 mbar to complete the 

devices. Current-voltage (J-V) data were generated by illuminating the devices using an 

ELH Quartzline halogen lamp at 1 sun. The solar simulator was calibrated using a 

crystalline silicon photodiode with a KG-5 filter. The hole only devices were prepared 

following the same procedure, except calcium was replaced with molybdenum suboxide. 

The hole mobility was extracted from the SCLC measurement using a Keithley 2400 

SourceMeter in the dark under ambient conditions. 

 

2.5.4 Synthesis 

Synthesis of PBDT-TPD  

BDT (193.0 mg, 0.25 mmol) and compound 8 (105.7 mg, 0.25 mmol) were dissolved in 

toluene (9 mL) and sparged with argon for 30 min. 

Tris(dibenzylideneacetone)dipalladium(0) (4.9 mg, 2 mol%) and tri(o-tolyl)phosphine 
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(7.1 mg, 9 mol%) were added and the reaction refluxed for 48 h. The polymer was end-

capped by refluxing with trimethyl(phenyl)tin (50 mg) for 4 h, followed by refluxing with 

iodobenzene (0.1 mL) overnight. After cooling to ambient temperature, the mixture was 

precipitated into methanol and filtered through a Soxhlet thimble. The polymer was 

washed with methanol (4 h), acetone (4 h), hexanes (12 h), and extracted with 

chloroform. The chloroform fraction was then concentrated and the polymer run through 

a short silica gel plug. The resulting fraction was then concentrated (~5 mL) and 

precipitated into methanol, filtered, and dried to give the expected polymer as a dark 

purple solid (145.6 mg, 82%). Mn: 24.9 kDa, PDI: 1.8; Not soluble enough in CDCl3 for 

1H NMR. 

 

Synthesis ofPBDT-PPD 

Compound 6 (186.2 mg, 0.36 mmol) and BDT (278.0 mg, 0.36 mmol) were dissolved in 

toluene (10 mL) and sparged with argon for 30 min. 

Tris(dibenzylideneacetone)dipalladium(0) (6.6 mg, 2 mol%) and tri(o-tolyl)phosphine 

(9.8 mg, 9 mol%) were added and the reaction refluxed for 48 h. The polymer was end-

capped by refluxing with trimethyl(phenyl)tin (50 mg) for 4 h, followed by refluxing with 

iodobenzene (0.1 mL) overnight. After cooling to ambient temperature, the mixture was 

precipitated into methanol and filtered through a Soxhlet thimble. The polymer was 

washed with methanol (4 h), acetone (4 h), hexanes (12 h), and extracted with 

chloroform. The chloroform fraction was then concentrated and the polymer run through 

a short silica gel plug. The resulting fraction was then concentrated (~5 mL) and 

precipitated into methanol, filtered, and dried in vacuo to give the expected polymer as a 
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dark orange solid (210.8 mg, 73%). Mn: 20.1 kDa, PDI: 1.8; 1H NMR (600 MHz, CDCl3) 

δ 8.34 (s, 2H), 4.63 (s, 2H), 4.40 (s, 4H), 3.64 (s, 2H), 2.05 – 0.68 (m, 60H). 
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2.7 Supporting Information 

2.7.1 Synthesis 

Diethyl 1H-pyrrole-3,4-dicarboxylate (1) A suspension of potassium tert-butoxide 

(11.5 g, 102 mmol) in THF (100 mL) was stirred under argon in a flame dried two neck 

500 mL round bottom flask. A solution of diethyl fumarate (8.8 g, 51.5 mmol) and p-

toluenesulfonylmethyl isocyanide (10.0 g, 51.6 mmol) in THF (50 mL) was slowly added 

to the suspension and allowed to stir overnight. The reaction was then quenched with a 

saturated sodium chloride solution, extracted with THF (3 x 200 mL), and dried with 

anhydrous sodium sulfate. The solvent was removed under reduced pressure and the 

resulting solid dissolved methanol (50 mL). The solution was then precipitated in water, 

filtered, and dried to give the expected product as an off-white solid (7.2 g, 67%). 
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1HNMR (600 MHz, DMSO-d6) δ: 7.36 (s, 2H), 4.15 (q, J = 7.0 Hz, 4H), 1.23 (t, J = 7.1 

Hz, 6H).; 13CNMR (150 MHz, DMSO-d6) δ: 163.41, 125.26, 115.03, 59.39, 14.20. 

 

1H-pyrrole-3,4-dicarboxylic acid (2) Compound 1 (5.30 g, 25 mmol) was added to a 

solution of NaOH (8.2 g, 205 mmol) in 50% (v/v) aqueous ethanol (50 mL). The reaction 

was refluxed overnight and diluted with water (50 mL) while still hot. The reaction was 

acidified with 1M HCl and a white precipitate formed. The precipitate was filtered, 

washed with water, and dried to give the expected product as a white solid (3.48 g, 89%). 

1HNMR (400 MHz, DMSO-d6) δ: 14.05 (s, 2H), 12.17 (s, 1H), 7.61 (d, J = 2.9 Hz, 2H); 

13CNMR (100 MHz, DMSO-d6) δ: 167.0, 128.9, 109.9 

 

4-(octylcarbamoyl)-1H-pyrrole-3-carboxylic acid (3) A solution of N,N’-

dicyclohexylcarbodiimide (3.99 g, 19.4 mmol) in THF (120 mL) was added to a 

suspension of 2 (2.50 g, 16 mmol) in THF (80 mL) in one portion. The reaction mixture 

was allowed to reflux for 2 h before cooling to room temperature after which a precipitate 

formed. The precipitate was filtered off and washed with THF before the filtrate was 

concentrated (~20 mL). Octylamine (2.31 g, 17.8 mmol) was added slowly and the 

reaction stirred at room temperature overnight. The solvent was removed and the 

remaining oil triturated with 1 M HCl, resulting in a thick paste. A solution of 3 M NaOH 

was added to dissolve the acid and sonicated for 30 min. The excess urea was filtered off 

and the filtrate neutralized with 1 M HCl forming a white precipitate. The precipitate was 

filtered and dried to give the expected product as a white solid (3.77 g, 88%) which was 

used without further purification. 1H NMR (400 MHz, DMSO-d6) δ 11.88 (s, 1H), 9.03 
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(s, 1H), 7.66 (s, 1H), 7.50 (s, 1H), 3.24 (q, J = 6.9 Hz, 2H), 1.51 (dp, J = 4161.9, 7.0 Hz, 

2H), 1.33 – 1.19 (m, 10H), 0.85 (t, J = 7.2, 6.5 Hz, 3H). 

 

2-octylpyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (4) Compound 3 (0.36 g, 1.4 mmol) 

was dissolved in dry DMF (10 mL) and cooled with an ice bath. Thionyl chloride (0.51 g, 

4.3 mmol) was added slowly over 10 min. The reaction was allowed to stir at room 

temperature for 2 h before quenching with water/ice. Saturated NaCl solution was added 

before extraction with THF (3 x 100 mL). The organic layers were combined, dried with 

Na2SO4, and concentrated. The crude material was then purified by silica gel 

chromatography using 7:3 hexane/THF as eluent to give the expected product as a tacky 

off-white low melting solid (0.33 g, 97%). 1HNMR (400 MHz, CDCl3) δ: 9.49 (s, 1H), 

7.08 (d, J = 2.5 Hz, 2H), 3.54 (t, J = 7.5 Hz, 2H), 1.61 (p, J = 7.3 Hz, 2H), 1.36 – 1.15 

(m, 10H), 0.86 (t, J = 7.1 Hz, 3H); 13CNMR (100 MHz, CDCl3) δ: 164.99, 121.59, 

115.96, 38.18, 31.92, 29.37, 29.33, 28.92, 27.05, 22.77, 14.21. 

 

4,6-dibromo-2-octylpyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (5) A solution of 4 (1.42 

g, 5.7 mmol) in THF (20 mL) was cooled to -78 °C and protected from light. NBS (2.27 

g, 12.7 mmol) was added in one portion. The reaction mixture stirred at -78 °C for 30 

min followed by stirring at 0 °C for 3.5 h. The reaction was quenched by the addition of 

Na2SO3∙5H2O and allowed to stir for 15 min before being decanted. The solvent was 

removed followed by addition of CCl4 (20 mL) and further stirring. After 15 min, the 

resulting precipitate was filtered and the filtrate concentrated. The crude material was 

then purified on a silica gel column using 1:1 hexane/ether as eluent to give the expected 
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product as an off-white tacky solid (1.84 g, 79%). 1HNMR (600 MHz, CDCl3) δ: 10.37 

(s, 1H), 3.57 (t, J = 7.3 Hz, 2H), 1.61 (p, J = 7.6, 7.2, 6.8 Hz, 2H), 1.26 (br, 10H), 0.85 (t, 

J = 6.9 Hz, 3H); 13CNMR (150 MHz, CDCl3) δ: 162.62, 121.66, 98.58, 38.57, 31.91, 

29.31, 29.29, 28.72, 26.98, 22.76, 14.21. 

 

4,6-dibromo-2,5-dioctylpyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (7) Anhydrous K2CO3 

(0.60 g, 4.4 mmol) and 18-crown-6 (14 mg) were added to a solution of compound 5 

(0.80 g, 2.0 mmol) dissolved in dry DMF (15 mL) and the reaction stirred at 100 °C for 1 

h. The drop wise addition of 1-bromooctane (0.58 g, 3.0 mmol) was followed by stirring 

at 120 °C for 36 h. The mixture was quenched with a brine solution and extracted with 

THF (3 x 50 mL). The organic layers were combined, dried with Na2SO4, and 

concentrated. The crude product was purified on a silica gel column using 19:1 

hexane:THF as eluent to give the expected product as a light orange solid (0.49 g, 48%). 

mp 124-125.5 °C. 1HNMR (400 MHz, CDCl3) δ: 4.03 (t, J = 7.8 Hz, 2H), 3.53 (t, J = 7.3 

Hz, 2H), 1.72 (p, J = 7.2 Hz, 2H), 1.59 (p, J = 7.8 Hz, 2H), 1.40 – 1.19 (m, 20H), 0.87 (q, 

J = 7.1, 6.7 Hz, 6H); 13CNMR (100 MHz, CDCl3) δ: 162.49, 121.59, 100.81, 47.62, 

38.28, 31.95, 31.85, 30.47, 29.99, 29.35, 29.30, 29.21, 29.18, 28.75, 26.97, 26.56, 22.78, 

22.75, 14.24, 14.22. HRMS (ESI) m/z: [M + Na]+ calcd for C22H34Br2NaN2O2, 539.0879; 

found, 539.0868; deviation, 2.18 ppm. 
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5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (7) A suspension of thiophene-3,4-

dicarboxylic acid (1.01 g, 5.9 mmol) in acetic anhydride (20 mL) was heated at 140 °C 

overnight. Upon cooling to ambient temperature, the solvent was removed under high 

vacuum. The resulting crude solid was dissolved in toluene (15 mL) and n-octylamine 

(1.01 g, 7.8 mmol) was added dropwise. The reaction mixture was refluxed overnight. 

The solvent was then removed under reduced pressure, and the resulting solid dissolved 

in thionyl chloride (20 mL) before being refluxed for 4h. After cooling, the solvent was 

removed and the solid taken up in chloroform before being washed with excess water. 

The organic layer was dried with anhydrous sodium sulfate and removed under reduced 

pressure. Purification by silica gel column chromatography using 1:1 hexanes/chloroform 

as eluent gave the expected product as an off-white solid (1.32 g, 85%). 1H NMR (600 

MHz, CDCl3) δ 7.80 (s, 2H), 3.61 (t, J = 7.3 Hz, 2H), 1.64 (p, J = 7.9, 7.4, 7.0 Hz, 2H), 

1.37 – 1.22 (m, 10H), 0.87 (t, J = 7.1 Hz, 3H). 

 

1,3-dibromo-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (8) Compound 7 (1.42 g, 

5.4 mmol) was dissolved in 20 mL trifluoroacetic acid/sulfuric acid (10:3) and protected 

from light. NBS (3.81 g, 21.6 mmol) was added in three portions and the reaction stirred 

overnight at ambient temperature. The reaction was extracted with chloroform and 

washed with dilute aqueous KOH, water, and dried over anhydrous sodium sulfate. After 
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removal of the solvent, purification by silica gel column chromatography using 1:1 

hexanes/chloroform as eluent gave the expected product as an off-white solid (1.19 g, 

53%). 1H NMR (400 MHz, CDCl3) δ 3.59 (t, J = 7.2 Hz, 2H), 1.63 (p, J = 7.4 Hz, 2H), 

1.38 – 1.20 (m, 2H), 0.87 (t, J = 7.0 Hz, 2H). 
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Figure S2.1. 1H NMR of 1. 
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Figure S2.2. 1H NMR of 2. 
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Figure S2.3. 1H NMR of 3. 
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Figure S2.4. 1H NMR of 4. 
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Figure S2.5. 1H NMR of 5. 
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Figure S2.6. 1H NMR of 6. 
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Figure S2.7. 13C NMR of 6. 
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Figure S2.8. 1H NMR of 7. 
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Figure S2.9. 1H NMR of 8. 
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Figure S2.10. 1H NMR of PBDT-PPD. 
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Figure S2.11. UV-vis absorption of PBDT-TPD in solution and film. 

 
Figure S2.12. UV-vis absorption of PBDT-PPD in solution and film. 
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Figure S2.13. Cyclic voltammetry trace of PBDT-TPD. 

 
Figure S2.14. Cyclic voltammetry trace of PBDT-PPD. 
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Figure S2.15. Thermal gravometric analysis of PBDT-TPD and PBDT-PPD under air. 

 
Figure S2.16. Differential scanning calorimetry of PBDT-PPD under nitrogen. 
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Figure S2.17. Absorption of PBDT-PPD, PC71BM, and PBDT-PPD:PC71BM blend. 

 
Figure S2.18. External quantum efficiencies of PBDT-TPD and PBDT-PPD devices. 
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3.1 Abstract 

 A series of four D1-A-D2-A-D1 molecular donors are reported, where D1 is bithio-

phene or thieno[3,2-b]thiophene, A is fluorobenzothiadiazole, and D2 is a 3,3’- bridged 

bithiophene. The resulting materials have broad absorption with a maximum near 700 nm 

in thin films. The incorporation of thieno[3,2-b]thiophene resulted in a widening of the 

optical bandgap, relative to the bithiophene; while the use of carbon as the bridging atom 

resulted in a narrowing of the optical bandgap, relative to the silicon bridged bithiophene. 

Their initial use in organic solar cells gave mixed results due to poor film formation. The 

poor films, visible to the naked eye, resulted in low current density, and therefore low 

power conversion efficiency. Fabrication conditions, focusing on casting spin rate, are 

currently being optimized. After optimization, a direct relationship between structure, 

morphology, and efficiency will be established. 

 

3.2 Introduction 

Since their introduction 20 years ago, organic photovoltaics (OPVs) have gained trac-

tion as promising potential alternatives to silicon based photovoltaics, due to being solu-

tion-proccesable, low-cost, lightweight, and flexible.1 In recent years, OPVs based on 

polymeric and molecular donors have achieved power conversion efficiencies (PCEs) 

over 10% using bulk heterojunction (BHJ) architectures.2-8 Small molecule donors, as 

opposed to polymeric materials, are monodisperse, resulting in little batch to batch varia-

tion, and are obtainable in very high purity due to their increased solubility, allowing 

them to be purified readily by common techniques. The monodisperse nature of small 
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molecules allows for meaningful structure-property relationships to be assessed, through 

structural modifications, without any possible complications from varying average mo-

lecular weights and polydispersities.9, 10  

To date, one of the most popular and successful designs for molecular donors has 

been the D1-A-D2-A-D1 framework.11 These structures consist of a central π-electron 

rich core (D2) flanked by two π-electron deficient groups (A) with further π-conjugated 

side groups (D1), generally comprised of oligiothiophenes, extending out and end cap-

ping the system. The use of electron rich bridged bithiophenes for D2, such as dithi-

eno[3,2-b:2',3'-d]silole (DTS) and cyclopenta[2,1-b:3,4-b']dithiophene (CPDT), helps 

increase the planarity of the system and also enables the incorporation of solubilizing al-

kyl chains, while also allowing ample electron density for strong donor-acceptor interac-

tions.12-14 The use of two acceptors with high electron affinity, such as 2,1,3-

benzothiadiazole derivatives, allow for deep LUMO energy levels and strong donor-

acceptor interactions with D2. Further extension of the π-conjugated system with oligi-

othiophenes as D1 narrows the bandgap and helps promote self-assembly through the in-

corporation of an end capping alkyl chain. 

The most efficient D1-A-D2-A-D1 molecular donor, to date, is a DTS based material 

reported by Bazan et al.15 The use of asymmetric 2,1,3-benzothiadiazole derivatives, al-

low for a much higher degree of synthetic control due to the selective reactivity in palla-

dium catalyzed cross couplings.11, 16-18 This material possessed a relatively narrow optical 

bandgap and broad absorption over the solar spectrum. While various iterations of the 

corresponding 2,1,3-pyridylthiadiazole have been extensively studied, to date, there have 
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been no reports on the effect of heterocycle substitution of D1 or bridgehead substitution 

in D2 in the FBT containing material.17, 19-21 

 

 
Figure 3.1. Work reported by Bazan et al.15 and this work. 

 Herein, we report three new molecular donors utilizing the D1-A-D2-A-D1 frame-

work, where D1 is and alkylated 2,2’-bithiophene (BT) or thieno[3,2-b]thiophene (TT); A 

is 5-fluoro-2,1,3-benzothiadiazole (FBT); and D2 is either DTS or CPDT, as shown in 

Figure 3.1. The use of CPDT causes a small red-shift in the maximum absorption of ~12 

nm and a narrowing of the optical bandgap, relative to DTS. The incorporation of TT is 

seen to cause a blue-shift of over 20 nm and a wider bandgap than the BT analogues. Un-

optimized OPV cells show the DTS containing materials with higher current densities 

than the CPDT analogues. The device fabrication, which is notoriously sensitive to pro-

cessing conditions, is still being optimized.18, 20 After optimization, general conclusions 

over the photovoltaic performance of the materials and the role of heterocycle substitu-

tion will be drawn. 
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3.3 Results and Discussion 

3.3.1 Synthesis and Characterization 

The synthesis of the side groups is shown in Scheme 3.1. The side groups were pre-

pared by the regioselective Stille cross-coupling between 4,7-dibromo-5-fluoro-2,1,3-

benzothiadiazole (6) and 5'-hexyl-2,2’-bithophene-5-trimethylstannane (2) or (5-

hexylthieno[3,2-b]thiophen-2-yl)trimethylstannane (4), to give FBT-BT  and FBT-TT, 

respectively, using methods similar to those used by Bazan et al. and, reported during the 

preparation of this article, Jen et al.15, 22 The correct regioisomers of FBT-BT and FBT-

TT  were confirmed via 2D 1H-1H NOESY (Figure S3.9 and S3.12, Supporting Infor-

mation). Synthetic procedures for the side groups are described in the Supporting Infor-

mation. 

 

 
Scheme 3.1. Synthesis of D1-A side groups FBT-BT and FBT-TT. 

The Stille cross-coupling of compounds FBT-BT and FBT-TT with DTS or 

CPDT to give the small molecules DTS-FBT-BT, DTS-FBT-TT, CPDT-FBT-BT, and 

CPDT-FBT-TT is shown in Scheme 3.2. All of the products were isolated in moderate 
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yield after extensive purification and were soluble in chlorobenzene and dichlorobenzene 

at room temperature, while only slightly soluble in chloroform. 

 

 
Scheme 3.2. Synthesis of the D1-A-D2-A-D1 small molecules DTS-FBT-BT, CPDT-
FBT-BT, DTS-FBT-TT, and CPDT-FBT-TT. 

 The solution and thin film optical properties of the small molecules, given in Table 

3.2, were investigated using UV-vis absorption spectroscopy. Absorption spectra in dilute 

chloroform solution are shown in Figure 3.1 and thin films cast from chlorobenzene are 

shown in Figure 3.2. All four materials displayed similar broad low-energy transitions 

with λmax between 579 nm and 610 nm. In an effort to gauge chromophore strength, ab-

sorption coefficients were measured (Table S3.1, Supporting information) and plotted 

versus wavelength in Figure 3.1. Both DTS-FBT-BT and CPDT-FBT-BT showed 

stronger absorption and a slight red shift of 5 and 8 nm, respectively, when compared to 

DTS-FBT-TT and CPDT-FBT-TT. When comparing D2, another increase in absorption 

can be seen when going from DTS to CPDT with both the BT and TT containing side 

groups, as well as slightly larger red shifts of 26 and 23 nm, respectively.  
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Figure 3.2. UV-vis of  D1-A-D2-A-D1 small molecules in CHCl3. 

 
Figure 3.3. UV-vis of  D1-A-D2-A-D1 small molecule thin films. 
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 Thin film absorption measurements, showed large red-shifts in λmax, compared to so-

lution, for DTS-FBT-BT, DTS-FBT-TT, CPDT-FBT-BT, and CPDT-FBT-TT of 101, 

86, 82, and 76 nm, respectively. The absorption spectra are shown in Figure 3.3. All ma-

terials displayed a red-shift in the optical onset between film and solution in the range of 

71 – 77 nm, suggesting a similar order of π-stacking. Vibronic structure can be seen in all 

four materials, indicative of highly ordered films.13, 23 The optical bandgap measured 

from the thin films follows the same trend as in solution, with DTS-FBT-TT > DTS-

FBT-BT > CPDT-FBT-TT > CPDT-FBT-BT. 

 

Table 3.1. Optical and electrochemical properties of D1-A-D2-A-D1 small molecules. 

SM 𝜆𝜆maxsoln (nm)a 𝐸𝐸g 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (eV)b 𝜆𝜆maxfilm  (nm) 𝐸𝐸g
 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (eV)c 𝐸𝐸HOMO (eV)d 𝐸𝐸LUMO (eV)e 

DTS-FBT-BT 584 1.86 685 1.68 -4.97 -3.29 

DTS-FBT-TT 579 1.89 665 1.70 -5.04 -3.34 
CPDT-FBT-BT 610 1.82 692 1.63 -5.01 -3.38 
CPDT-FBT-TT 602 1.85 678 1.67 -4.95 -3.28 

aTaken in dilute chloroform solution. bCalculated from the absorption onset of the solu-
tion spectra. cCalculated from the absorption onset of the film spectra. dCalculated from 
the reduction and oxidation onsets using the equation 𝐸𝐸HOMO = -4.8 - 𝐸𝐸redox. eCalculated 
from the HOMO energy level and optical band-gap. 

 

 The electrochemical properties of the molecules were measured using solution cyclic 

voltammetry. All four of the materials showed reversible oxidation and reduction cycles 

(Figure S3.32 – S3.35, Supporting Information). The highest occupied molecular orbital 

(HOMO) was estimated from the oxidation onset and lowest unoccupied molecular or-

bital (LUMO) was calculated using the HOMO energy level and the optical band-gap. All 
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of the compounds have very similar HOMO levels of  -4.97, -5.04, -5.01, and -4.95 eV 

for DTS-FBT-BT, DTS-FBT-TT, CPDT-FBT-BT, and CPDT-FBT-TT, respectively, 

which are all well within the error associated with cyclic voltammetry.24 

 

3.3.2 Photovoltaic Devices 

 Photovoltaic devices were fabricated with the structure ITO/PEDOT:PSS/              

donor:PC71BM/Ca/Al, where ITO is indium tin oxide and PEDOT:PSS is poly(3,4-

ethylenedioxythiophene) polystyrene sulfonate, and PC71BM is [6,6]-phenyl-C71-butyric 

acid methyl ester. The resulting J–V curves of the unoptimized devices are shown in Fig-

ure 3.4, and the results summarized in Table 3.2. Devices based on all four materials had 

reasonable open-circuit voltages (VOC), with the lowest being 0.74 V from the CPDT-

FBT-BT device. The poor efficiencies are primarily due to the low short-circuit current 

density (JSC) and low fill-factors (FF). The low JSC and FF are likely due to the poor film 

quality and uniformity. The lack of uniformity in the thin films is visible by eye, as seen 

in Figure S3.36 – S3.38 (Supporting Information). 

 

Table 3.2. Characteristics of the unoptimized photovoltaic devices. 

Materiala JSC 
(mA cm-2) 

VOC 
(V) FF PCEave

 

(%) 
PCEmax 

(%) 
DTS-FBT-BT 6.0 0.78 0.36 1.68 1.81 

DTS-FBT-TT 6.0 0.85 0.43 2.21 2.30 

CPDT-FBT-BT 4.6 0.74 0.52 1.80 1.82 

CPDT-FBT-TT 4.0 0.86 0.42 1.45 1.46 
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Figure 3.4. Characteristic current density–voltage (J–V) curves of unoptimized BHJ solar 
cells under AM 1.5G, 100 mW cm-2 illumination. 

 

 The poor film quality is likely caused by too high of an initial spin rate when casting 

films (2000 rpm). In an attempt to alleviate this issue, devices are currently being fabri-

cated at with a spin rate of 800 rpm and 1200 rpm with a ramp of 200 rpm/s. Even with 

the issue of film quality, it appears that the DTS based materials have much higher JSC 

than the CPDT based materials. This is a somewhat common occurrence within BHJ de-

vices incorporating DTS or CPDT. This effect has been previously attributed to the en-

hanced structural order of DTS due to longer covalent bonds and orbital interactions of Si 

between molecules.14, 25-26 Once film uniformity is accomplished, a more direct compari-

son between all of the structures and device performance can be firmly established, as 

well as collection of external quantum efficiencies and charge mobilities through the 

space-charge limited current method. 
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3.4 Conclusions 

 We have reported the synthesis of three new D1-A-D2-A-D1 molecular donors com-

prising various oligiothiophenes as D1 and DTS or CPDT as D2. All three materials 

show broad light absorption around 700 nm. The CPDT based materials display higher 

molar absorptivity and narrower optical bandgaps than their respective DTS analogs. Ini-

tial use of the materials in OPVs has given low overall efficiencies, most likely due to 

unoptimized device fabrication conditions, particularly in terms of poor film uniformity. 

Optimization of the photovoltaic devices is currently ongoing, after which, conclusions 

based on material performance can be firmly established. 

 

3.5. Experimental 

3.5.1 Materials  

Air- and moisture-sensitive reactions were performed using standard Schlenk tech-

niques. Solvents used for palladium-catalyzed reactions were deoxygenated prior to use 

by sparging with argon for 30 minutes. 4,4-bis(2-ethylhexyl)-2,6-bis(trimethylstannyl)-

4H-cyclopenta[2,1-b:3,4-b']dithiophene (CPDT)27, 2,2’-bithiophene28, thieno[3,2-

b]thiophene29, and 3,3’,5-5’-tetrabromobithiophene28 were prepared according to litera-

ture procedure. The CPDT stannane was purified by preparative HPLC using the same 

conditions as for DTS. The preparation of FBT-BT, FBT-TT, DTS, and all corresponding 

precursors are described in the Supporting Information section. All other chemical rea-

gents were purchased commercially and used without further purification unless other-

wise noted. 
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3.5.2 Characterization 

Nuclear magnetic resonance (NMR) spectra were collected on Varian VXR-300, Var-

ian MR-400, or Bruker Avance III-600 spectrometers. 1H NMR spectra were internally 

referenced to the residual solvent peak. In all spectra, chemical shifts are given in ppm (δ) 

relative to the solvent. Preparative HPLC was done on an Agilent 1100 series HPLC us-

ing a Phenomenex Luna 21.2 mm X 250 mm C18 (TMS endcapped, 5 µm particle size) 

AXIA column, using 40% acetonitrile 60% acetone at 10 mL/min as eluent and detected 

at 340 nm. Cyclic voltammetry (CV) measurements were carried out using an e-DAQ e-

corder 410 potentiostat with a scanning rate of 50 mV s-1. A platinum button electrode 

was used with Ag/Ag+ and Pt wire used as the reference and auxiliary electrodes, respec-

tively. The reported values were referenced to Fc/Fc+ (-4.8 versus vacuum). All electro-

chemical experiments were performed in deoxygenated dichloromethane under an argon 

atmosphere using 0.1 M tetrabutylammonium hexafluorophosphate as electrolyte at a 

small molecule concentration of ≈1 mg mL-1. Absorption spectra were obtained on a pho-

todiode-array Agilent 8453 UV-visible spectrophotometer using polymer solutions in 

CHCl3 and thin films. The thin films were spin coated from chlorobenzene at a concen-

tration of 3 mg mL-1 on to glass slides at a spin rate of 1200 rpm on a Headway Research, 

Inc. PWM32 spin-coater. 

 

3.5.3 Photovoltaic Device Fabrication 

Devices were fabricated on ITO coated glass substrates (5-15 Ω/□) from Delta Tech-

nologies. The substrates were ultrasonicated consecutively in detergent (alconox), de-

ionized water and 2-propanol for 10 minutes. The substrates were blown dry with nitro-
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gen and kept on a hot plate at 100 °C for 10 minutes. These were treated with air plasma 

and then PEDOT:PSS (VP 4083) was spin coated on top of them at 5000 rpm for 30 sec-

onds as the hole transport layer (HTL) of the device, and finally annealed at 150 °C for 

10 minutes before transferring the substrates inside the glove box. The active layer solu-

tions were prepared inside the glove box. Donor and PC70BM from 1-materials Inc. were 

dissolved in chlorobenzene (CB) from Sigma-Aldrich with a total concentration of 

35mg/ml donor:PC70BM (3:2 by weight). 0.4% by volume DIO was added to the solu-

tion. These solutions were stirred at 300 rpm at 60 °C on a hot plate for more than 12 

hours and filtered using a 0.22 μm PTFE filter (Sigma-Aldrich). Solutions were heated to 

90 °C for 15 minutes before spin coating on the HTL coated ITO slides. Films  were spin 

coated at 2000 rpm for 40 seconds. The spin coated films were solvent annealed for 10 

minutes and thermal annealed at 80 °C for 10 minutes. Finally, 20 nm of Ca and 100 nm 

of Al were deposited sequentially on top of the active-layers as the electrode. Ca and Al 

were deposited using a thermal evaporator in 10-6 mbar vacuum at a rate slower than 0.5 

and 5 Å/s, respectively. 

 

3.5.4 Synthesis 

 

General procedure for the Stille coupling of 1 and DTS or CPDT: In a two neck 

round-bottom flask, DTS or CPDT (0.2 mmol) and 1 (194.8 mg, 0.4 mmol) were dis-

solved in toluene (12 mL) and sparged with argon for 45 min. 

Tetrakis(tripheylphosphine)palladium(0) (19.5 mg, 8 mol %) was added and the reaction 

mixture was refluxed for 48 h before cooling to ambient temperature. The reaction mix-
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ture was taken up in chloroform and loaded onto silica gel followed by washing with 

methanol and purification by silica gel chromatography using a hexanes/chloroform gra-

dient in triplicate. The collected fractions were concentrated, precipitated into methanol, 

filtered, washed with acetone, and dried in vacuo. 

 

DTS-FBT-BT: The product was recovered as a metallic purple solid (147.3 mg, 60%). 

1H NMR (400 MHz, CDCl3) δ 8.34 (t, J = 4.8 Hz, 2H), 8.04 (d, J = 3.9 Hz, 2H), 7.74 (d, 

J = 13.2 Hz, 2H), 7.19 (d, J = 3.9 Hz, 2H), 7.12 (d, J = 3.5 Hz, 2H), 6.73 (d, J = 3.6 Hz, 

2H), 2.82 (t, J = 7.6 Hz, 4H), 1.77 – 1.64 (m, 4H), 1.58 – 1.54 (m, 2H), 1.45 – 1.17 (m, 

28H), 1.17 – 1.02 (m, 4H), 0.97 – 0.87 (m, 6H), 0.87 – 0.78 (m, 12H). 

 

CPDT-FBT-BT: The product was recovered as a metallic purple solid (105.1 mg, 44%). 

1H NMR (400 MHz, CDCl3) δ 8.24 (t, J = 5.9 Hz, 2H), 8.01 (dt, J = 3.6, 1.7 Hz, 2H), 

7.72 (dd, J = 13.3, 1.1 Hz, 2H), 7.17 (d, J = 3.9 Hz, 2H), 7.12 (d, J = 3.5 Hz, 2H), 6.73 

(d, J = 3.5 Hz, 2H), 2.82 (t, J = 7.6 Hz, 4H), 2.14 – 2.01 (m, 4H), 1.71 (p, J = 7.5 Hz, 

4H), 1.46 – 1.37 (m, 4H), 1.37 – 1.29 (m, 8H), 1.13 – 0.94 (m, 16H), 0.95 – 0.87 (m, 6H), 

0.84 (q, J = 5.4 Hz, 2H), 0.70 – 0.61 (m, 12H). 

 

General procedure for the Stille coupling of 2 and DTS or CPDT: In a two neck 

round-bottom flask, DTS or CPDT (0.2 mmol) and 2 (181.3 mg, 0.4 mmol) were dis-

solved in toluene (12 mL) and sparged with argon for 45 min. 

Tetrakis(tripheylphosphine)palladium(0) (19.5 mg, 8 mol %) was added and the reaction 

mixture was refluxed for 48 h before cooling to ambient temperature. The reaction mix-
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ture was taken up in chloroform and loaded onto silica gel followed by washing with 

methanol and purification by silica gel chromatography using a hexanes/chloroform gra-

dient in triplicate. The collected fractions were concentrated, precipitated into methanol, 

filtered, and dried in vacuo. 

 

DTS-FBT-TT: The product was recovered as a metallic purple solid (103.0 mg, 43%). 

1H NMR (400 MHz, CDCl3) δ 8.38 (s, 2H), 8.34 (t, J = 4.6 Hz, 2H), 7.67 (d, J = 13.2 Hz, 

2H), 6.98 (s, 2H), 2.91 (t, J = 7.7 Hz, 4H), 1.81 – 1.69 (m, 4H), 1.62 – 1.52 (m, 2H), 1.47 

– 1.20 (m, 28H), 1.18 – 1.04 (m, 4H), 0.96 – 0.88 (m, 6H), 0.88 – 0.81 (m, 12H). 

 

CPDT-FBT-TT: The product was recovered as a metallic purple solid (59.1 mg, 26%). 

1H NMR (400 MHz, CDCl3) δ 8.42 (s, 2H), 8.24 (t, J = 5.7 Hz, 2H), 7.73 (d, J = 13.5 Hz, 

2H), 7.00 (s, 2H), 2.92 (t, J = 7.6 Hz, 4H), 2.08 (s, 4H), 1.75 (p, J = 7.6 Hz, 4H), 1.47 – 

1.37 (m, 4H), 1.37 – 1.29 (m, 8H), 1.25 (s, 2H), 1.09 – 0.93 (m, 14H), 0.94 – 0.86 (m, 

6H), 0.86 – 0.77 (m, 2H), 0.72 – 0.60 (m, 12H). 
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3.7 Supporting Information 

3.7.1 Synthesis 

 

 

 

5-hexyl-2,2’bithiophene (1) A solution of 2,2’-bithiophene (3.17 g, 19 mmol) and hexa-

noyl chloride (2.8 mL, 20 mmol) in anhydrous benzene (20 mL) was cooled to 0 °C with 

an ice-bath. Anhydrous tin(IV) chloride (2.4 mL, 20.5 mmol) was added dropwise, and 

the solution allowed to stir for 1h at 0 °C. The reaction was then quenched with ice and 

diluted with dichloromethane (50 mL). The reaction mixture was then washed with water, 

saturated sodium bicarbonate solution, and then dried over anhydrous sodium sulfate. 

The solvent was removed, and the crude material was suspended in ethylene glycol (30 

mL). Solid potassium hydroxide pellets (4.37 g, 78 mmol) were added, followed by the 

dropwise addition of hydrazine monohydrate (7.5 mL, 155 mmol). The reaction mixture 

was then heated at 180 °C overnight. After cooling to ambient temperature, the reaction 

was neutralized with dilute HCl solution and extracted with diethyl ether. The ether layer 

was washed with water, brine, and dried over anhydrous sodium sulfate. Purification us-

ing column chromatography on silica gel with hexanes as eluent gave the expected prod-

uct as a colorless oil (3.51 g, 74%). 1H NMR (400 MHz, CDCl3) δ 7.16 (dd, J = 5.1, 1.0 

Hz, 1H), 7.10 (dd, J = 3.6, 1.1 Hz, 1H), 6.99 (d, J = 3.7 Hz, 1H), 6.98 (d, J = 3.5 Hz, 1H), 
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6.68 (d, J = 3.5 Hz, 1H), 2.79 (t, J = 7.5 Hz, 2H), 1.68 (p, J = 7.4 Hz, 2H), 1.45 – 1.25 

(m, 6H), 0.89 (t, J = 6.9 Hz, 3H). 

 

5’-hexyl-5-(trimethylstannyl)-2,2’-bithiophene (2) Compound 1 (0.71 g, 2.8 mmol) 

was dissolved in THF (20 mL) and cooled to -78 °C. After the dropwise addition of n-

butyllithium (1.4 mL, 2.5 M in hexanes), the reaction was allowed to stir at -78 °C for 30 

min before being warmed to 0 °C for an hour. The reaction was then cooled back to -78 

°C and trimethyltin chloride (3.4 mL, 1.0 M in THF) was added dropwise. The reaction 

was allowed to stir at room temperature overnight before being quenched with saturated 

ammonium chloride solution. The crude product was extracted with ether and dried. After 

removal of the solvent, the crude material was purified by vacuum distillation to give the 

expected product as a colorless oil (0.98 g, 84%). 1H NMR (600 MHz, CDCl3) δ 7.20 (d, 

J = 3.3 Hz, 1H), 7.06 (d, J = 3.4 Hz, 1H), 6.97 (d, J = 3.6 Hz, 1H), 6.67 (d, J = 3.8 Hz, 

1H), 2.78 (t, J = 7.5 Hz, 2H), 1.68 (p, J = 7.5 Hz, 2H), 1.43 – 1.35 (m, 2H), 1.35 – 1.26 

(m, 4H), 0.89 (t, J = 6.3 Hz, 3H), 0.38 (s, 9H). 

 

 

 

2-hexylthieno[3,2-b]thiophene (3) A solution of thieno[3,2-b]thiophene (0.25 g, 1.8 

mmol) in THF (10 mL) was cooled to -78 °C before the dropwise addition of n-

butyllithium (0.67 mL, 2.5 M in hexanes). The reaction was stirred at temperature 1h be-
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fore the very slow addition of 1-bromohexane (0.37 g, 2.2 mmol). The reaction was al-

lowed to slowly warm to ambient temperature and stirred overnight. The mixture was 

then poured into water and extracted with dichloromethane. The organic layer was dried 

over anhydrous sodium sulfate and the solvent removed under reduced pressure. The 

crude material was purified by vacuum distillation to give the expected product as a col-

orless oil (0.24 g, 65%). 1H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 5.2 Hz, 1H), 7.18 (d, 

J = 5.2 Hz, 1H), 6.96 (s, 1H), 2.88 (t, J = 7.6 Hz, 2H), 1.71 (p, J = 7.5 Hz, 2H), 1.45 – 

1.34 (m, 2H), 1.36 – 1.27 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H). 

 

5-hexyl-2-(trimethylstannyl)thieno[3,2-b]thiophene (4) Compound 3 (0.61 g, 2.7 

mmol) was dissolved in THF (20 mL) and cooled to -78 °C. After the dropwise addition 

of n-butyllithium (1.2 mL, 2.5 M in hexanes), the reaction was allowed to stir at -78 °C 

for 30 min before being warmed to 0 °C for an hour. The reaction was then cooled back 

to -78 °C and trimethyltin chloride (4.0 mL, 1.0 M in THF) was added dropwise. The re-

action was allowed to stir at room temperature overnight before being quenched with sat-

urated ammonium chloride solution. The crude product was extracted with ether and 

dried. After removal of the solvent, the crude material was purified by vacuum distilla-

tion to give the expected product as a colorless oil (0.81 g, 77%). 1H NMR (400 MHz, 

CDCl3) δ 7.21 (s, 1H), 6.94 (s, 1H), 2.86 (t, J = 7.4 Hz, 2H), 1.70 (p, J = 7.6 Hz, 2H), 

1.42 – 1.35 (m, 2H), 1.34 – 1.27 (m, 4H), 0.88 (t, J = 7.0 Hz, 3H), 0.38 (s, 9H). 

 



www.manaraa.com

113 
 

- 
 

 

 

5-fluoro-2,1,3-benzothiadiazole (5) A solution of 4-fluoro-1,2-diaminobenzene (4.05 g, 

32.1 mmol) and triethylamine (14 mL, 190 mmol) were dissolved in chloroform (60 mL) 

was cooled to 0 °C with an ice bath. Thionyl chloride (4.6 mL, 63.3 mmol) was added 

dropwise, and the reaction was refluxed overnight. After cooling to ambient temperature, 

the reaction was washed with water to remove excess amine. The crude material was run 

through a short chloroform plug. The material was further purified by silica gel column 

chromatography using 1:3 hexanes/dichloromethane as eluent to give the expected prod-

uct as an off white solid (4.71 g, 95%). 1H NMR (600 MHz, CDCl3) δ 7.99 (dd, J = 9.5, 

5.2 Hz, 1H), 7.62 (dd, J = 8.8, 2.5 Hz, 1H), 7.44 (ddd, J = 9.5, 8.5, 2.5 Hz, 1H). 

 

4,7-dibromo-5-fluoro-2,1,3-benzothiadiazole (6) Compound 5 (4.42 g, 28.7 mmol) was 

dissolved in 48% HBr (50 mL). Bromine (15.7 mL, 312 mmol) in HBr (50 mL) was add-

ed very slowly over 2h. After the complete addition of bromine, the reaction was refluxed 

for 72h before being diluted with water. The reaction mixture was extracted with chloro-

form, and the organic layer was washed with dilute sodium hydroxide solution, followed 

by excess water, dried over anhydrous sodium sulfate, and the solvent removed. Purifica-

tion of the crude material with silica gel column chromatography using 1:1 hex-

anes/chloroform as eluent gave the expected product as a white solid (6.52 g, 96%). 1H 

NMR (600 MHz, CDCl3) δ 7.79 (d, J = 8.3 Hz, 1H). 
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4-bromo-5-fluoro-7-(5’-hexyl-[2,2’-bithiophene]-5-yl)-2,1,3-benzothiadiazole (FBT-

BT) In a two neck round-bottom flask, 2 (308.9 mg, 1.00 mmol) and 6 (412.8 mg, 1.00 

mmol) were dissolved in toluene (12 mL) and sparged with argon for 45 min. 

Tetrakis(tripheylphosphine)palladium(0) (126.7 mg, 8 mol %) was added and the reaction 

mixture was refluxed for 48 h before cooling to ambient temperature. The solvent was 

removed and the reaction mixture taken up in chloroform followed by being run through 

a short silica gel plug. The resulting fraction was then concentrated to give a dark red sol-

id. The crude product was then recrystallized from ethanol to give a light red powder 

(272.4 mg, 57%). 1H NMR (600 MHz, CDCl3) δ 8.04 (q, J = 3.8, 3.2 Hz, 1H), 7.68 (d, J 

= 9.4 Hz, 1H), 7.19 (d, J = 3.8 Hz, 1H), 7.12 (d, J = 3.5 Hz, 1H), 6.73 (d, J = 3.5 Hz, 1H), 

2.82 (t, J = 7.6 Hz, 2H), 1.70 (p, J = 7.8 Hz, 2H), 1.46 – 1.37 (m, 2H), 1.36 – 1.28 (m, 

4H), 0.90 (t, J = 6.1 Hz, 3H). 

 

4-bromo-5-fluoro-7-(5-hexylthieno[3,2-b]thiophen-2-yl)-2,1,3-benzothiadiazole 

(FBT-TT) In a two neck round-bottom flask, 4 (808.6 mg, 2.08 mmol) and 6 (646.6 mg, 

2.08 mmol) were dissolved in toluene (12 mL) and sparged with argon for 45 min. 

Tetrakis(tripheylphosphine)palladium(0) (195.9 mg, 8 mol %) was added and the reaction 

mixture was refluxed for 48 h before cooling to ambient temperature. The solvent was 

removed and the reaction mixture taken up in chloroform followed by being run through 

a short silica gel plug. The resulting fraction was then concentrated to give a dark orange 

solid. The crude product was then recrystallized from ethanol to give bright orange crys-

tals (559.8 mg, 59%). 1H NMR (600 MHz, CDCl3) δ 8.46 (s, 1H), 7.70 (d, J = 10.1 Hz, 

1H), 7.03 (s, 1H), 2.95 (t, J = 8.1 Hz, 2H), 1.78 (p, J = 7.6 Hz, 2H), 1.50 – 1.41 (m, 2H), 
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1.39 – 1.34 (m, 4H), 0.94 (t, J = 6.9 Hz, 3H); 13C NMR (151 MHz, CDCl3) δ 160.76 (d, J 

= 251.4 Hz), 154.37 (d, J = 7.3 Hz), 151.45 , 148.93 , 140.30 , 138.56 , 137.06 (d, J = 2.6 

Hz), 128.20 (d, J = 10.2 Hz), 122.41, 116.46, 115.56 (d, J = 30.8 Hz), 95.78 (d, J = 24.8 

Hz), 31.56, 31.44, 31.36, 28.76, 22.58, 14.08; HRMS (ESI, m/z): calcd. For 

C18H15BrFN2S3 [M-H]- 452.9565; found 452.9554; Diff (ppm) 2.38. 

 

 

 

(2-ethylhexyl)trichlorosilane (7) A solution of silicon tetrachloride (14 mL, 122.2 

mmol) in THF (40 mL) was cooled to -10 °C with an acetone/ice bath. 2-

ethylhexylmagnesium bromide solution (60 mL, 1.0 M in ether, Aldrich) was added 

dropwise and the reaction allowed to stir overnight at room temperature. The reaction 

was poured into hexanes and filtered to remove inorganic salts. The solution was concen-

trated, and the crude material purified by fractional distillation to give the expected prod-

uct as a clear oil (13.4 g, 90%). 1H NMR (400 MHz, CDCl3) δ 1.78 (p, J = 12.5, 6.2 Hz, 

1H), 1.49 – 1.35 (m, 6H), 1.35 – 1.23 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.9 

Hz, 3H). 

 

bis(2-ethylhexyl)dichlorosilane (8) A solution of compound 7 (13.4 g, 54 mmol) in THF 

(75 mL) was cooled to 0 °C with an ice bath. 2-ethylhexylmagnesium bromide solution 

(39 mL, 1.0 M in ether, Aldrich) was added dropwise and the reaction allowed to stir 

overnight at room temperature, followed by removal of the solvent. After dilution of the 
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crude material in hexanes, a precipitate formed. The solid was filtered and the filtrate 

concentrated. The resulting oil was purified by fractional distillation under high vacuum, 

giving the expected product as a colorless oil (10.2 g, 80%). 1H NMR (400 MHz, CDCl3) 

δ 1.70 (p, J = 12.4, 6.1 Hz, 2H), 1.44 – 1.20 (m, 16H), 1.11 (d, J = 6.7 Hz, 4H), 0.90 (t, J 

= 6.6 Hz, 6H), 0.86 (t, J = 7.4 Hz, 6H). 

 

 

 

3,3’-dibromo-5,5’-(trimethylsilyl)-2,2’bithiophene (9) A solution of 3,3’-5,5’-

tetrabromo-2,2’-bithiophene (30.1 g, 62 mmol) in THF (300 mL) was cooled to -78 °C. 

n-butyllithium solution (53 mL, 2.5 M in hexanes) was added dropwise and the reaction 

stirred for 4h at temperature. Trimethylsilyl chloride (21 mL, 165 mmol) was added 

dropwise and the reaction stirred for 15 min at -78 °C before being allowed to stir at am-

bient temperature overnight. The reaction was diluted with ether (400 mL) and washed 

with water and dried. Purification by silica gel column chromatography using hexanes as 

eluent, followed by recrystallization from ethanol gave the expected product as a light 

yellow solid (18.2 g, 62%). 1H NMR (400 MHz, CDCl3) δ 7.15 (s, 2H), 0.34 (s, 18H). 

 

4,4-bis(2-ethylhexyl)-2,6-bis(trimethylsilyl)-dithieno[3,2-b:2',3'-d]silole (10) A solu-

tion of 9 (11.78 g, 25 mmol) in THF (200 mL) was cooled to -78 °C. n-butyllithium solu-

tion (21.5 mL, 2.5 M in hexanes) was added dropwise and the reaction stirred for 2h at 
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temperature. Compound 8 (9.42 g, 30 mmol) was added dropwise and the reaction stirred 

at ambient temperature overnight. The reaction was poured into water and the crude ma-

terial extracted with ether, dried with anhydrous sodium sulfate, and the solvent removed. 

Purification by silica gel column chromatography using hexanes as eluent gave the ex-

pected product as a light yellow oil (11.54 g, 82%). 1H NMR (400 MHz, CDCl3) δ 7.11 

(s, 2H), 1.39 (p, J = 6.8, 5.9, 5.7 Hz, 2H), 1.33 – 1.20 (m, 4H), 1.20 – 1.10 (m, 12H), 1.01 

– 0.82 (m, 4H), 0.82 (t, J = 6.4 Hz, 6H), 0.76 (t, J = 7.3 Hz, 6H), 0.32 (s, 18H). 

 

 

 

4,4-bis(2-ethylhexyl)-2,6-dibromo-dithieno[3,2-b:2',3'-d]silole (11) Compound 10 

(1.14 g, 2 mmol) was dissolved in THF (25 mL) and protected from light. NBS (0.73 g, 

4.1 mmol) was added in two portions. The reaction was allowed to stir for 2h before be-

ing extracted with ether, washed with water, dried over anhydrous sodium sulfate, and 

concentrated. Purification by silica gel column chromatography using hexanes as eluent 

gave the expected product as a yellow oil (1.12 g, 96%). 1H NMR (400 MHz, CDCl3) δ 

6.98 (s, 2H), 1.37 (p, J = 6.2 Hz, 2H), 1.30 – 1.08 (m, 16H), 0.91 (dd, J = 6.7, 4.6 Hz, 

4H), 0.84 (t, J = 6.8 Hz, 6H), 0.77 (t, J = 7.4 Hz, 6H). 

 

4,4-bis(2-ethylhexyl)-2,6-bis(trimethylstannyl)-dithieno[3,2-b:2',3'-d]silole (DTS) A 

solution of 11 (1.12 g, 1.9 mmol) in THF (30 mL) was cooled to -78 °C. A solution of 
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nBuLi (5.25 mmol, 2.5 M in hexanes) was added dropwise and the reaction allowed to stir 

for two hours at -78 °C. Trimethyl tin chloride solution (6.25 mmol, 1 M in THF) was 

added dropwise. The reaction was slowly allowed to warm to room temperature and 

stirred overnight. The reaction mixture was poured into water and the crude product ex-

tracted with hexanes and dried over anhydrous Na2SO4. After removal of the solvent, the 

crude product was heated under high vacuum at 40 °C overnight. The crude material was 

purified by preparative HPLC to give the expected product as a tacky light yellow oil 

(0.97 g, 67%). 1H NMR (600 MHz, CDCl3) δ 7.07 (s, 2H), 1.45 – 1.37 (m, 2H), 1.32 – 

1.07 (m, 16H), 0.99 – 0.92 (m, 4H), 0.92 – 0.86 (m, 4H), 0.82 (t, J = 6.6 Hz, 6H), 0.77 (t, 

J = 7.3 Hz, 6H), 0.37 (s, 18H). 
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Figure S3.1. 1H NMR of 1. 

 

3.7.2 N
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Figure S3.2. 1H NMR of 2. 
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Figure S3.3. 1H NMR of 3. 
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Figure S3.4. 1H NMR of 4. 
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Figure S3.5. 1H NMR of 5. 
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Figure S3.6. 1H NMR of 6. 
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Figure S3.7. 1H NMR of FBT-BT. 
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Figure S3.8. 13C NMR of FBT-BT. 
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Figure S3.9. 1H-1H NOESY expanded in aromatic region of FBT-BT. 
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Figure S3.2. 1H NMR of 2. 

 

128 

Figure S3.10. 1H NMR of FBT-TT. 
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Figure S3.11. 13C NMR of FBT-TT. 
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Figure S3.12. 1H-1H NOESY expanded in aromatic region of FBT-TT. 
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131 

Figure S3.13. 1H NMR of 7. 
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Figure S3.14. 1H NMR of 8. 
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Figure S3.15. 1H NMR of 9. 
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Figure S3.16. 1H NMR of 10. 
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Figure S3.17. 1H NMR of 11. 
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Figure S3.18. 1H NMR of DTS (crude) with inset of aromatic region. 
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  Figure S3.19. 1H NMR of DTS (HPLC purified) with inset of aromatic region. 
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Figure S3.20. 1H NMR of DTS-FBT-BT. 
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Figure S3.21. 1H NMR of CPDT-FBT-BT. 
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Figure S3.22. 1H NMR of DTS-FBT-TT. 
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 Figure S3.23. 1H NMR of CPDT-FBT-TT. 
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Figure S3.24. UV-vis absorption of DTS-FBT-BT in CHCl3 and thin film. 

 
Figure S3.25. UV-vis absorption of DTS-FBT-TT in CHCl3 and thin film. 
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Figure S3.26. UV-vis absorption of CPDT-FBT-BT in CHCl3 and thin film. 

 
Figure S3.27. UV-vis absorption of CPDT-FBT-TT in CHCl3 and thin film. 
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Figure S3.28. Thin film UV-vis comparison of D1 with DTS core. 

 
Figure S3.29. Thin film UV-vis comparison of D1 with CPDT core. 
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Figure S3.30. Thin film UV-vis comparison of D2 with FBT-BT side group. 

 
Figure S3.31. Thin film UV-vis comparison of D2 with FBT-TT side group. 
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Figure S3.32. Cyclic voltammetry trace of DTS-FBT-BT in CH2Cl2 (~ 1mg mL-1). 

 
Figure S3.33. Cyclic voltammetry trace of DTS-FBT-TT in CH2Cl2 (~ 1mg mL-1). 
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Figure S3.34. Cyclic voltammetry trace of CPDT-FBT-BT in CH2Cl2 (~ 1mg mL-1). 

 
Figure S3.35. Cyclic voltammetry trace of CPDT-FBT-TT in CH2Cl2 (~ 1mg mL-1). 
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Figure S3.36. Image of ITO substrates after casting of the active layer. 

 

Figure S3.37. Image of poor film uniformity of a DTS-FBT-BT coated substrate. 
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Figure S3.38. Image of ITO substrates after casting of the active layer on other. 

 

Table S3.1. Molar absorptivity of D1-A-D2-A-D1 small molecules 

material 𝜆𝜆maxsoln (nm)a εb 

(L mol-1) 

DTS-FBT-BT 584 69,100 

DTS-FBT-TT 579 56,200 
CPDT-FBT-BT 610 76,400 
CPDT-FBT-TT 602 65,800 

aTaken in dilute chloroform solution.  bMeasured at λmax. 
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4.1 Abstract 

 We report the synthesis of four narrow bandgap donor-acceptor copolymers based on 

dithienosilole and furan-flanked diketopyrrolopyrrole. The alkyl chains on the diketo-

pyrrolopyrrole were varied to investigate their impact on thin film morphology in the sol-

id state. Incorporation of furan into the polymer allowed for the fine tuning of the energy 

levels. The furan stabilized the HOMO, allowing for a higher open-circuit voltage when 

used in photovoltaics. The polymers all exhibit a strong broad low-energy absorption 

band ranging from 550 – 900 nm and narrow bandgaps of 1.4 eV. Alkyl chain variation 

on the diketopyrrolopyrrole had negligible effects on the optical and electrochemical 

properties of the polymers. Their use in organic photovoltaic cells is currently being in-

vestigated. 

 

4.2 Introduction 

Since bulk heterojunction (BHJ) solar cells, comprised of a blend of an electron rich 

material and an electron deficient fullerene, were first reported 20 years ago, interest in 

developing narrow bandgap polymeric materials for use in organic photovoltaic (OPV) 

devices has exploded.1-11 There are many advantages of OPVs over traditional inorganic 

based devices, such as the fabrication of light weight and flexible devices, the potential to 

produce large-area films by low cost solution based techniques, and the ability to tune the 

properties of the photoactive material through structural modifications.12-14 An effective 

route to fine-tuning the optical and electronic properties of these material is to take ad-

vantage of the charge transfer characteristics of π-conjugated “donor-acceptor” copoly-
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mers comprised of alternating π-electron rich (donor) and π-electron deficient (acceptor) 

arylene units.15 Through this approach, and careful optimization of processing conditions, 

device efficiencies for BHJ OPVs have exceeded 10%.16-17 

 Recently, there has been an increased interest on the role heteroatom substitution 

plays on the electronic and physical properties of donor-acceptor polymers. This is gen-

erally accomplished by replacing the commonly used thiophene for either furan or sele-

nophene. The inclusion of oxygen and selenium can have dramatic effects on the perfor-

mance of a given material through the widening or narrowing of absorption bands, raising 

or lowering of energy levels, increasing or decreasing solubility which impacts the ability 

of the material to be processed resulting in changes to morphology of the thin film. 18,19 

Often times, the incorporation of furan and selenophene can have predictable effects rela-

tive to the thiophene-based material, such as with the electron deficient diketo-

pyrrolopyrrole (DPP).  Donor-acceptor polymers containing the furanyl-DPP unit have 

been shown to have significantly higher solubility and only a slightly wider optical 

bandgap (Eg
opt), while polymers containing the selenophene-DPP have slightly reduced 

bandgaps and decreased solubility.18, 20-22 This trend allows for selective tuning of thio-

phene-based DPP materials that may have had unfavorable solubility or energy levels for 

efficient OPVs. 

 Donor-acceptor polymers comprised of the electron-donating dithienosilole (DTS) 

unit and thiophenyl-DPP were reported by two groups in 2009, with the only variation 

being the solubilizing alkyl chains on the DTS and DPP units.23-24 Devices fabricated 

from the polymers with 2-ethylhexyl chains on both the DTS and DPP suffered from a 

very low open circuit voltage (VOC), yet still gave a power conversion efficiency (PCE) of 
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2.10%. The low VOC, which is primarily determined by the gap between the highest occu-

pied molecular orbital (HOMO) of the donor polymer and lowest unoccupied molecular 

orbital (LUMO) of the fullerene acceptor, was likely due to the relatively high HOMO of 

-5.04 eV.4, 24-25 The substitution of furan for thiophene on the DPP allows for a reduction 

of the HOMO while still maintaining a broad UV-Vis absorption and narrow bandgap. 

The morphology of the polymer:fullerene blend can be adjusted by varying the alkyl 

chain length and branching on the DPP, which has the potential to further increase the 

PCE.26 

 In an attempt to evaluate the role of heteroatom substitution on DPP containing mate-

rials, we have synthesized a series of furan based low bandgap DTS-DPP polymers. To 

further optimize the materials, the alkyl side chains on the DPP unit were varied, with the 

2-ethylhexyl derivative giving us a direct comparison to the previously reported thio-

phene based DTS-DPP polymer. The synthesized furan series all had similar thermal, op-

tical, and electrochemical properties, as expected due to the consistent polymer backbone. 

The furan based DTS-DPP polymers had deeper HOMO levels relative to the thiophene 

based material and a slightly wider optical bandgap. To make a true comparison, OPV 

devices were fabricated and are reported.  

 

4.3 Results and Discussion 

4.3.1 Synthesis and physical characterization 

The synthetic route to the DPP monomers and PDTSDPP polymers are shown in 

Scheme 4.1 and Scheme 4.2, respectively. In an effort to test the influence of alkyl side-

chains on the efficiency of PDTSDPP OPVs, DPP derivatives were synthesized with 2-
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ethylhexyl (M1), n-decyl (M2), n-dodecyl (M3), and n-tetradecyl (M4) side-chains (see 

Supporting Information). The Stille cross-coupling polymerization of DTS and M1-M4 

gave the expected polymers P1-P4 in moderate to good yields (57 – 88%) after purifica-

tion. All polymers, particularly P2, have low solubility in chloroform at room tempera-

ture, but were soluble in both chlorobenzene and 1,2-dichlorobenzene. 

 

 
Scheme 4.1. Synthesis of DPP monomers M1–M4. 

 

 
Scheme 4.2. Synthesis of PDTSDPP polymers P1-P4. 

Due to the low solubility in chloroform (<1 mg mL-1), 1H NMR spectra were unable 

to be collected. Molecular weights were estimated by gel permeation chromatography 

(GPC) against polystyrene standards, using chloroform at 40 °C as eluent, and are de-

scribed in Table 4.1. All four polymers had moderate number averaged molecular 

weights (Mn) ranging from 20.2 – 28.0 kDa, with dispersities (Đ) from 1.5 – 2.4. The 
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lower Mn and degree of polymerization (DPn) of P4 was likely due to the poor solubility 

of M4 at the concentration required, slowing down the rate of polymerization. While 

present in P1-4, even in very dilute solution, P2 showed heavy aggregation. The similar 

DPn of P1, P2, and P3 should allow for reasonable comparisons of the role of side chains 

on device performance. 

 

Table 4.1. Physical and thermal properties of PDTSDPP polymers. 

Polymer Yield 
(%) 

Mn 
(kDa)a Đb DPn 

Td5%c 

(°C) 

P1 84 23.1 2.4 25.5 394.4 
P2 69 22.2 1.5 23.0 383.5 
P3  57 28.0 1.8 27.4 354.6 
P4 88 20.2 1.7 18.8 388.3 

aDetermined by GPC against polystyrene standards in CHCl3 at 40 °C. bDispersity: 
Mw/Mn. 

cTemperature at 5% weight loss with a heating rate of 20 °C min-1 under air. 

 

The thermal properties of the polymers (Figure S4.24, Supporting Information) were 

investigated using thermogravimetric analysis and are summarized in Table 4.1. All pol-

ymers showed good thermal stability with 5% weight loss between 354.6 and 394.4 °C 

under air, well below the operating temperature of photovoltaic devices. 

 

4.3.2 Optical and electrochemical properties 

The normalized UV-Vis absorbance spectra of P1-P4 in dilute chloroform solution 

and thin films are shown in Figure 4.1 and 4.2, respectively and the data is summarized in 

Table 4.2. All four polymers possessed similar absorbance spectra with a relatively weak 
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high-energy band, which can be attributed to localized π-π* transitions, and a strong, 

broad low-energy band corresponding to intramolecular charge-transfer (ICT) between 

the electron-donating DTS and electron-accepting DPP units.27 While P1, P3, and P4 all 

have a single broad low-energy transition, vibrational splitting, common in solids, can be 

seen in P2.28-30 All polymers exhibit a relatively small shift in absorption from solution to 

thin film, indicating the polymers are likely aggregated in solution. 

 The thin film optical properties of all four polymers are very similar. Polymer P1 dis-

played the most dramatic change between solution and film with a bathochromic shift in 

λmax of 33 nm, while P2, P3, and P4 showed hypsochromic shifts of 9 nm, 20 nm, and 6 

nm, respectively. Optical bandgaps, measured from the optical onset, were similar and 

ranged from 1.38 – 1.43 eV. The similarity in absorbance and optical bandgap between 

P1-P4 is expected due to possessing the same backbone. While P4 had a lower DPn than 

P1, P2, and P3, the similar optical properties suggest the effective conjugation length of 

the polymer was reached.31 The slight variance in the thin film measurements is likely 

due to the difference in alkyl chains on the DPP unit.26  

 

Table 4.2. Optical and electrochemical properties of PDTSDPP polymers. 

Polymer 𝜆𝜆maxsoln (nm)a 𝜆𝜆maxfilm  (nm) Eg
opt (eV)b 𝐸𝐸HOMO (eV)c 𝐸𝐸LUMO (eV)c Eg

ec (eV) 

P1 756 789 1.42 -5.30 -3.39 1.91 

P2 806 797 1.43 -5.36 -3.40 1.96 
P3  794 774 1.38 -5.27 -3.40 1.87 
P4 789 783 1.38 -5.27 -3.42 1.85 

aMeasured in chloroform. bCalculated from the absorption onset of the film spectra; 
cCalculated from the reduction and oxidation onsets using the equation 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻/𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = -
4.8 - 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 
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Figure 4.1. UV-vis absorption of  P1-P4 in CHCl3. 

 
Figure 4.2. UV-vis absorption of  P1-P4 in thin film. 
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 The oxidation and reduction potentials of the polymers were determined electrochem-

ically by cyclic voltammetry (CV). The highest occupied molecular orbital (HOMO) and 

lowest occupied molecular orbital (LUMO) of each polymer was estimated from the oxi-

dation onset and reduction onset, respectively, using the absolute energy level of ferro-

cene/ferrocenium (Fc/Fc+) as -4.8 eV vs vacuum and are summarized in Table 4.2. All 

four polymers showed reversible oxidation and reduction peaks (Figure S4.20 – S4.23, 

Supporting Information). The estimated HOMO energy levels for P1-P4 were between -

5.3 and -5.4 eV, all below the air oxidation threshold of -5.2 eV.32 The LUMO levels 

were approximately -3.4 eV, giving an average electrochemical bandgap of 1.90 ± 0.05 

eV. The HOMO, LUMO, and electrochemical bandgaps of each polymer all fall well 

within the error associated with electrochemical measurements, which is expected since 

they possess the same polymer backbone.33 

 

2.3.3 Photovoltaic devices 

 Photovoltaic devices are currently being fabricated by the Reynolds group at the 

Georgia Institute of Technology as of the writing of this manuscript. 

 

4.4 Conclusions 

 A series of four copolymers based on dithienosilole and furan containing diketo-

pyrrolopyrrole with various alkyl chains were synthesized. Incorporation of furan stabi-

lized the HOMO of the polymer relative to the previously reported thiophene analog, 

while still maintaining a low lying LUMO and narrow bandgap of 1.4 eV. The polymers 

all exhibit a strong broad low-energy absorption band ranging from 550 – 900 nm. Alkyl 
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chain variation on the diketopyrrolopyrrole had negligible effects on the optical and elec-

trochemical properties of the polymers. The polymers are currently being tested in organ-

ic photovoltaic cells as of the writing of this manuscript, where the role of alkyl chain 

substitution on the photovoltaic performance will be investigated. 

 

4.5 Experimental 

4.5.1 Materials 

Air- and moisture-sensitive reactions were performed using standard Schlenk tech-

niques. Solvents used for palladium-catalyzed reactions were deoxygenated prior to use 

by sparging with argon for 30 minutes. 3,3’,5-5’-tetrabromobithiophene34 and 2-

furancarbonitrile35 were prepared using literature procedures. 2-ethylhexylmagnesium 

bromide (1.0 M in ether) was purchased from Sigma-Aldrich. The preparation of DTS 

and the DPP monomers M1, M2, M3, and M4 are described in the Supporting Infor-

mation. All other chemicals were purchased commercially and used without further puri-

fication. 

 

4.5.2 Characterization 

Nuclear magnetic resonance (NMR) spectra were collected on Varian VXR-300, Var-

ian MR-400, or Bruker Avance III-600 spectrometers. 1H NMR spectra were internally 

referenced to the residual solvent peak. In all spectra, chemical shifts are given in ppm (δ) 

relative to the solvent. Gel permeation chromatography (GPC) measurements were per-

formed on a Shimadzu Prominence GPC with two 10 µm AM Gel columns connected in 

series (guard, 10,000 Å, 1,000 Å) in chloroform at 40 °C relative to polystyrene stand-
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ards. Preparative HPLC was done on an Agilent 1100 series HPLC using a Phenomenex 

Luna 21.2 mm X 250 mm C18 (TMS endcapped, 5 µm particle size) AXIA column, us-

ing 40% acetonitrile 60% acetone at 10 mL/min as eluent and detected at 340 nm. Ther-

mogravimetric analysis (TGA) was performed over an interval of 30 – 900 °C at a heat-

ing rate of 20 °C min-1 under ambient atmosphere. Cyclic voltammetry (CV) measure-

ments were carried out using an e-DAQ e-corder 410 potentiostat with a scanning rate of 

100 mV s-1. The polymer films were dropcast from 1 – 2 mg mL-1 solutions in chloroben-

zene onto a platinum working electrode. Ag/Ag+ and Pt wire were used as the reference 

and auxiliary electrodes, respectively. The reported values were referenced to Fc/Fc+ (-

4.8 versus vacuum). All electrochemical experiments were performed in deoxygenated 

acetonitrile under an argon atmosphere using 0.1 M tetrabutylammonium hexafluoro-

phosphate as electrolyte. Absorption spectra were obtained on a photodiode-array Agilent 

8453 UV-visible spectrophotometer using polymer solutions in CHCl3 and thin films. 

The films were cast by spin coating 25 x 25 x 1 mm glass slides using solutions of poly-

mer (2.5 – 5.0 mg mL-1) in chlorobenzene at a spin rate of 1200 rpm on a Headway Re-

search, Inc. PWM32 spin-coater. 

 

4.5.3 Synthesis 

General procedure for the polymerization of P1-P4: DTS (78.2 mg, 0.11 mmol) and 

M1, M2, M3, or M4 (0.10 mmol) were dissolved in deoxygenated chlorobenzene (4 mL) 

and sparged with argon for an additional 30 min. 

Tris(dibenzylideneacetone)dipalladium(0) (1.8 mg, 2 mol%) and tri(o-tolyl)phosphine 

(2.4 mg, 8 mol%) were added and the reaction heated at 130 °C for  36 h. The polymer 
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was end-capped by heating with trimethyl(phenyl)tin (15 mg) for 4 h, followed by heat-

ing with iodobenzene (0.05 mL) overnight. After cooling to ambient temperature, the 

mixture was precipitated into methanol and filtered through a Soxhlet thimble. The pol-

ymer was washed with methanol (4 h), acetone (4 h), hexanes (12 h), and extracted with 

chlorobenzene. The chlorobenzene fraction was then concentrated and the polymer run 

through a short silica gel plug with chlorobenzene as eluent. The resulting fraction was 

then concentrated (~5 mL) and precipitated into methanol, filtered, and dried in vacuo to 

yield the desired polymer. 

 

Synthesis of P1. Synthesis of P1 afforded a dark solid (76.8 mg, 84%). GPC (CHCl3, 40 

°C): Mn = 23.1 kDa, Mw = 54.6 kDa, Đ = 2.4, DPn = 25.5. Td5% = 394.4 °C  

 

Synthesis of P2. Synthesis of P2 afforded a dark solid (66.9 mg, 69%). GPC (CHCl3, 40 

°C): Mn = 22.2 kDa, Mw = 34.2 kDa, Đ = 1.5, DPn = 23.0. Td5% = 383.5 °C. 

 

Synthesis of P3. Synthesis of P3 afforded a dark solid (58.9 mg, 57%). GPC (CHCl3, 40 

°C): Mn = 28.0 kDa, Mw = 51.6 kDa, Đ = 1.8, DPn = 27.4. Td5% = 354.6 °C. 

 

Synthesis of P4. Synthesis of P4 afforded a dark solid (94.0 mg, 88%). GPC (CHCl3, 40 

°C): Mn = 20.2 kDa, Mw = 35.3 kDa, Đ = 1.7, DPn = 18.8. Td5% = 388.3 °C. 
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4.7 Supporting Information 

4.7.1 Synthesis 

3,6-Di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (1).  Sodium metal (4.94 g, 

211 mmol) was added to tert-amyl alcohol (120 mL) and the solution refluxed overnight. 

2-furancarbonitrile (25.0 g, 269 mmol) was added in one portion to the hot alkoxide solu-

tion followed by the dropwise addition of dimethyl succinate (13.09 g, 90 mmol) in tert-

amyl alcohol (80 mL). After complete addition of the dimethyl succinate solution, the 

mixture was allowed to stir at reflux overnight. The reaction mixture was then allowed to 

cool to 60 °C, quenched with 40 mL of acetic acid, and allowed to stir at reflux for 1 h. 

The resulting suspension was then filtered and the solid washed with hot methanol and 

water three times and dried under vacuum affording 1 as a dark solid (21.80 g, 91%). 

Compound 1 was used without further purification. 

 

General procedure for the preparation of 2,5-dialkyl-3,6-di(furan-2-yl)pyrrolo[3,4-

c]pyrrole-1,4(2H,5H)-dione 2, 3, 4, & 5 Compound 1 , potassium carbonate (4.3 equi), 

and 18-crown-6 (14 mg) were added to dry DMF (35 mL) and heated at 100 °C for 1 h. 
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Alkyl bromide (3.4 equi) was added dropwise and the reaction was allowed to stir at 130 

°C for 48 h. The reaction mixture was allowed to cool and poured into water (100 mL). 

The crude mixture was then extracted with chloroform (3 x 250 mL). The combined or-

ganic layers were washed with copious amounts of water, dried with Na2SO4, and con-

centrated to afford dark crude solid. 

 

2,5-bis(2-ethylhexyl)-3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (2): 

The crude 2 was purified by silica gel chromatography with chloroform as eluent to af-

ford the expected compound as a shiny red solid (4.60 g, 60 %). 1H NMR (400 MHz, 

CDCl3) δ: 8.33 (dd, J = 3.6, 0.7 Hz, 2H), 7.61 (dd, J = 1.7, 0.7 Hz, 2H), 6.69 (dd, J = 3.7, 

1.7 Hz, 2H), 4.04 (dd, J = 7.4, 1.1 Hz, 4H), 1.83 – 1.67 (m, 2H), 1.42 – 1.19 (m, 16H), 

0.98 – 0.78 (m, 6H). 

 

2,5-didecyl-3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (3) The crude 3 

was purified by silica gel chromatography using 1:2 hexanes/chloroform as eluent to give 

the expected product as a shiny purple solid (1.39 g, 63 %). 1H NMR (300 MHz, CDCl3) 

δ 8.31 (d, J = 3.8 Hz, 2H), 7.64 (d, J = 1.5 Hz, 2H), 6.70 (q, J = 1.8 Hz, 2H), 4.11 (t, J = 

7.6 Hz, 4H), 1.68 (d, J = 7.6 Hz, 4H), 1.42 – 1.15 (m, 28H), 0.86 (t, J = 6.8 Hz, 6H). 

 

2,5-didodecyl-3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (4) The crude 

4 was purified by silica gel chromatography using 1:1 hexanes/chloroform as eluent to 

give the expected product as a shiny purple solid (1.63 g, 66 %). 1H NMR (600 MHz, 

CDCl3) δ 8.30 (dd, J = 3.6, 0.7 Hz, 2H), 7.63 (dd, J = 1.7, 0.7 Hz, 2H), 6.69 (dd, J = 3.7, 
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1.7 Hz, 2H), 4.11 (t, J = 7.5 Hz, 4H), 1.73 – 1.67 (m, 4H), 1.43 – 1.21 (m, 36H), 0.88 (t, J 

= 7.0 Hz, 6H). 

 

3,6-di(furan-2-yl)-2,5-ditetradecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (5) The 

crude 5 was purified by silica gel chromatography using 1:1 hexanes/chloroform as elu-

ent to give the expected product as a shiny purple solid (1.94 g, 73 %). 1H NMR (600 

MHz, CDCl3) δ 8.31 (dd, J = 3.7, 0.7 Hz, 2H), 7.63 (dd, J = 1.7, 0.7 Hz, 2H), 6.70 (dd, J 

= 3.7, 1.7 Hz, 2H), 4.13 – 4.08 (m, 4H), 1.83 – 1.58 (m, 4H), 1.43 – 1.18 (m, 44H), 0.88 

(t, J = 7.1 Hz, 6H). 

 

General procedure for the preparation of 3,6-bis(5-bromofuran-2-yl)-2,5-

dialkylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione M1, M2, M3, & M4 Compounds 2, 3, 

4, and 5 were dissolved in chloroform (250 mL) and protected from light. The solution 

was cooled to 0 °C and NBS (2.2 equi) added in two portions over 10 min. The reaction 

was stirred at room temperature for 48 h before quenching with methanol (20 mL). The 

reaction mixture was diluted with chloroform (400 mL) and washed with water (3 x 500 

mL), dried with Na2SO4, and concentrated to give dark crude solids. 

 

3,6-bis(5-bromofuran-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-

dione (M1) The crude M1 was purified by silica gel chromatography using 1:1 chloro-

form:hexane as eluent to give the expected product as a shiny red solid (1.30 g, 60 %). 

1HNMR (600 MHz, CDCl3) δ: 8.33 (d, J = 3.7 Hz, 2H), 6.65 (d, J = 3.7 Hz, 2H), 4.02 (d, 
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J = 7.5 Hz, 4H), 1.82 (p, J = 6.0, 5.5 Hz, 2H), 1.45 – 1.20 (m, 32H), 0.90 (tt, J = 12.0, 7.1 

Hz, 12H). 

 

3,6-bis(5-bromofuran-2-yl)-2,5-didecyl-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M2) 

The crude M2 was purified by silica gel chromatography using 2:3 hexanes/chloroform 

as eluent to give the expected product as a shiny purple solid (0.78 g, 44 %). 1H NMR 

(400 MHz, CDCl3) δ 8.25 (d, J = 3.7 Hz, 2H), 6.63 (d, J = 3.7 Hz, 2H), 4.05 (t, J = 7.7 

Hz, 4H), 1.76 – 1.62 (m, 4H), 1.47 – 1.17 (m, 28H), 0.87 (t, J = 6.8 Hz, 6H). 

 

3,6-bis(5-bromofuran-2-yl)-2,5-didodecyl-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 

(M3) The crude M3 was purified by silica gel chromatography using 1:1 hex-

anes/chloroform as eluent to give the expected product as a shiny purple solid (1.01 g, 49 

%). 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 3.8 Hz, 2H), 6.63 (d, J = 3.7 Hz, 2H), 4.05 

(t, J = 7.4 Hz, 4H), 1.75 – 1.65 (m, 4H), 1.45 – 1.20 (m, 36), 0.87 (t, J = 7.1 Hz, 6H). 

 

3,6-bis(5-bromofuran-2-yl)-2,5-ditetradecyl-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 

(M4) The crude M4 was purified by silica gel chromatography using 1:1 hex-

anes/chloroform as eluent to give the expected product as a shiny purple solid (1.15 g, 48 

%). 1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 3.6 Hz, 2H), 6.63 (d, J = 3.7 Hz, 2H), 4.05 

(t, 4H), 1.74 – 1.64 (m, 4H), 1.46 – 1.15 (m, 44H), 0.88 (t, J = 6.7 Hz, 6H). 
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(2-ethylhexyl)trichlorosilane (6) A solution of silicon tetrachloride (14 mL, 122.2 

mmol) in THF (40 mL) was cooled to -10 °C with an acetone/ice bath. 2-

ethylhexylmagnesium bromide solution (60 mL, 1.0 M in ether, Aldrich) was added 

dropwise and the reaction allowed to stir overnight at room temperature. The reaction 

was poured into hexanes and filtered to remove inorganic salts. The solution was concen-

trated, and the crude material purified by fractional distillation to give the expected prod-

uct as a clear oil (13.4 g, 90%). 1H NMR (400 MHz, CDCl3) δ 1.78 (p, J = 12.5, 6.2 Hz, 

1H), 1.49 – 1.35 (m, 6H), 1.35 – 1.23 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.9 

Hz, 3H). 

 

bis(2-ethylhexyl)dichlorosilane (7) A solution of compound 6 (13.4 g, 54 mmol) in THF 

(75 mL) was cooled to 0 °C with an ice bath. 2-ethylhexylmagnesium bromide solution 

(39 mL, 1.0 M in ether, Aldrich) was added dropwise and the reaction allowed to stir 

overnight at room temperature, followed by removal of the solvent. After dilution of the 

crude material in hexanes, a precipitate formed. The solid was filtered and the filtrate 

concentrated. The resulting oil was purified by fractional distillation under high vacuum, 

giving the expected product as a colorless oil (10.2 g, 80%). 1H NMR (400 MHz, CDCl3) 

δ 1.70 (p, J = 12.4, 6.1 Hz, 2H), 1.44 – 1.20 (m, 16H), 1.11 (d, J = 6.7 Hz, 4H), 0.90 (t, J 

= 6.6 Hz, 6H), 0.86 (t, J = 7.4 Hz, 6H). 

 



www.manaraa.com

169 
 

 
 

 

 

3,3’-dibromo-5,5’-(trimethylsilyl)-2,2’bithiophene (8) A solution of 3,3’-5,5’-

tetrabromo-2,2’-bithiophene (30.1 g, 62 mmol) in THF (300 mL) was cooled to -78 °C. 

n-butyllithium solution (53 mL, 2.5 M in hexanes) was added dropwise and the reaction 

stirred for 4h at temperature. Trimethylsilyl chloride (21 mL, 165 mmol) was added 

dropwise and the reaction stirred for 15 min at -78 °C before being allowed to stir at am-

bient temperature overnight. The reaction was diluted with ether (400 mL) and washed 

with water and dried. Purification by silica gel column chromatography using hexanes as 

eluent, followed by recrystallization from ethanol gave the expected product as a light 

yellow solid (18.2 g, 62%). 1H NMR (400 MHz, CDCl3) δ 7.15 (s, 2H), 0.34 (s, 18H). 

 

4,4-bis(2-ethylhexyl)-2,6-bis(trimethylsilyl)-dithieno[3,2-b:2',3'-d]silole (9) A solution 

of 8 (11.78 g, 25 mmol) in THF (200 mL) was cooled to -78 °C. n-butyllithium solution 

(21.5 mL, 2.5 M in hexanes) was added dropwise and the reaction stirred for 2h at tem-

perature. Compound 7 (9.42 g, 30 mmol) was added dropwise and the reaction stirred at 

ambient temperature overnight. The reaction was poured into water and the crude materi-

al extracted with ether, dried with anhydrous sodium sulfate, and the solvent removed. 

Purification by silica gel column chromatography using hexanes as eluent gave the ex-

pected product as a light yellow oil (11.54 g, 82%). 1H NMR (400 MHz, CDCl3) δ 7.11 
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(s, 2H), 1.39 (p, J = 6.8, 5.9, 5.7 Hz, 2H), 1.33 – 1.20 (m, 4H), 1.20 – 1.10 (m, 12H), 1.01 

– 0.82 (m, 4H), 0.82 (t, J = 6.4 Hz, 6H), 0.76 (t, J = 7.3 Hz, 6H), 0.32 (s, 18H). 

 

 

 

4,4-bis(2-ethylhexyl)-2,6-dibromo-dithieno[3,2-b:2',3'-d]silole (10) Compound 9 (1.14 

g, 2 mmol) was dissolved in THF (25 mL) and protected from light. NBS (0.73 g, 4.1 

mmol) was added in two portions. The reaction was allowed to stir for 2h before being 

extracted with ether, washed with water, dried over anhydrous sodium sulfate, and con-

centrated. Purification by silica gel column chromatography using hexanes as eluent gave 

the expected product as a yellow oil (1.12 g, 96%). 1H NMR (400 MHz, CDCl3) δ 6.98 

(s, 2H), 1.37 (p, J = 6.2 Hz, 2H), 1.30 – 1.08 (m, 16H), 0.91 (dd, J = 6.7, 4.6 Hz, 4H), 

0.84 (t, J = 6.8 Hz, 6H), 0.77 (t, J = 7.4 Hz, 6H). 

 

4,4-bis(2-ethylhexyl)-2,6-bis(trimethylstannyl)-dithieno[3,2-b:2',3'-d]silole (DTS) A 

solution of 10 (1.12 g, 1.9 mmol) in THF (30 mL) was cooled to -78 °C. A solution of 

nBuLi (5.25 mmol, 2.5 M in hexanes) was added dropwise and the reaction allowed to stir 

for two hours at -78 °C. Trimethyl tin chloride solution (6.25 mmol, 1 M in THF) was 

added dropwise. The reaction was slowly allowed to warm to room temperature and 

stirred overnight. The reaction mixture was poured into water and the crude product ex-

tracted with hexanes and dried over anhydrous Na2SO4. After removal of the solvent, the 
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crude product was heated under high vacuum at 40 °C overnight. The crude material was 

purified by preparative HPLC to give the expected product as a tacky light yellow oil 

(0.97 g, 67%). 1H NMR (600 MHz, CDCl3) δ 7.07 (s, 2H), 1.45 – 1.37 (m, 2H), 1.32 – 

1.07 (m, 16H), 0.99 – 0.92 (m, 4H), 0.92 – 0.86 (m, 4H), 0.82 (t, J = 6.6 Hz, 6H), 0.77 (t, 

J = 7.3 Hz, 6H), 0.37 (s, 18H). 
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Figure S4.1. 1H NMR of 2. 
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Figure S4.2. 1H NMR of 3. 
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Figure S4.3. 1H NMR of 4. 
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Figure S4.4. 1H NMR of 5. 

175 



www.manaraa.com

176 
 

 
 

  

Figure S4.5. 1H NMR of M1. 
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Figure S4.6. 1H NMR of M2. 
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Figure S4.7. 1H NMR of M3. 
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Figure S4.8. 1H NMR of M4. 
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Figure S4.9. 1H NMR of 6. 
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Figure S4.10. 1H NMR of 7. 
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Figure S4.11. 1H NMR of 8. 
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Figure S4.12. 1H NMR of 9. 
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Figure S4.13. 1H NMR of 10. 
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Figure S4.14. 1H NMR of DTS (crude) with inset of aromatic region. 
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  Figure S4.15. 1H NMR of DTS (HPLC purified) with inset of aromatic region. 

186 
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Figure S4.16. UV-vis absorption of P1 in CHCl3 and thin film. 

 
Figure S4.17. UV-vis absorption of P2 in CHCl3 and thin film. 
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Figure S4.18. UV-vis absorption of P3 in CHCl3 and thin film. 

 
Figure S4.19. UV-vis absorption of P4 in CHCl3 and thin film. 
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Figure S4.20. Cyclic voltammetry trace of P1. 

 
Figure S4.21. Cyclic voltammetry trace of P2. 
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Figure S4.22. Cyclic voltammetry trace of P3. 

 
Figure S4.23. Cyclic voltammetry trace of P4. 
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Figure S4.24. Thermal gravometric analysis of P1-P4. 
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5.1 Abstract 

 Donor-acceptor copolymers comprised of the pyrrolo[3,4-c]pyrrole-1,3-dione (PPD) 

unit  as a π-electron donor and pyrrolo[3,4-c]pyrrole-1,3-dione or diketopyrrolopyrrole as 

π-electron acceptors were synthesized by the Stille cross-coupling reaction. The optical 

and electrochemical properties were studied and compared to the polymer PBDT-PPD, 



www.manaraa.com

195 
 

 
 

where PPD was used an acceptor. Although the PPD donor polymers suffered from low 

molecular weights and poor film forming properties, they displayed significantly lower 

bandgaps, broader optical absorption, and lower LUMO levels than PBDT-PPD. The im-

provements in optical absorption and energy levels give promise to the use of PPD as a 

donor in medium to narrow bandgap donor-acceptor copolymers. 

 

5.2 Introduction 

Research into organic semiconductors has grown exponentially since their discovery 

nearly forty years ago.1-3 In that time, the field has grown to encompass organic light-

emitting diodes, photovoltaics (OPVs), field-effect transistors, and non-linear optics, 

among others.4-15 With the ever increasing need for energy, the development of high per-

formance OPVs has become vital.16 The use of conjugated donor-acceptor polymers, 

comprised of alternating π-electron rich and π-electron deficient arylene units, allows for 

energy levels that may be impossible to attain through the use of homopolymers.8, 17-19 

This technique has paved the way to materials with many desirable properties, such as 

deep highest occupied molecular orbital energy levels, broad optical absorption bands, 

LUMO levels with appropriate alignment to [6,6]-phenyl-C71-butyric acid methyl ester 

(PC71BM), and materials with relatively large dielectric constants.20-25  

Heteroatom substitution in conjugated polymers can have a drastic impact on the 

physical, optical, and electronic properties of a material.20, 26 Pyrrolo[3,4-c]pyrroledione 

(PPD) is a little studied unit that is structurally similar to the widely used thieno[3,4-

c]pyrroledione (TPD). Incorporation of an electron rich pyrrole has multiple advantages, 

including the possibility of increased solubility, without the addition of π-spacers, 
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through nitrogen alkylation.27 While this may increase solubility, the change in the elec-

tronics and polarizability of the monomer can have damaging effects on donor-acceptor 

copolymers. As shown in Chapter 4 of this dissertation, the substitution of the sulfur in 

TPD with a nitrogen, as in PPD, turns off intramolecular charge transfer (ICT) between 

the donor and the acceptor unit. This drastically decreases optical absorption, widens the 

optical bandgap, and destabilizes the highest occupied molecular orbital (HOMO). The 

homopolymer-like characteristics displayed by the use of PPD as an acceptor suggests it 

may be better suited as a π-electron donor. 

 Here, we report the synthesis and properties of two donor-acceptor copolymers incor-

porating the PPD unit as a π-electron donor and thieno[3,4-c]pyrroledione and diketo-

pyrrolopyrrole as π-electron acceptors. Optical and electrochemical studies of the poly-

mers showed significantly narrower bandgaps than PBDT-PPD. Both materials had lower 

LUMO levels of -3.79 and -3.95 eV, compared to the -3.10 eV of PBDT-PPD. As thin 

films, both polymers showed broad absorption bands, indicative of ICT.17, 19 The pres-

ence of ICT, broad absorption, and low LUMO levels show potential for the incorpora-

tion of PPD into high efficiency materials. 

 

5.3 Results and Discussion 

 The synthetic route to the PPD monomer is shown in Scheme 5.1. Compound 3 was 

prepared from diethyl fumarate and toluenesulfonylmethyl isocyanide according to litera-

ture procedure, followed by N-alkylation with 2-butyloctyl bromide to give 4.27 Bromina-

tion and subsequent soaponification of compound 4 gave the diacid 6. Conversion of 6 to 
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the corresponding anhydride using acetic anhydride, ring opening with 2-

butyloctylamine, and ring closure with thionyl chloride gave the final PPD monomer 7. 

 

Scheme 5.1. Synthetic route to the PPD monomer 7. 

 The synthesis of the donor-acceptor copolymers is shown in Scheme 5.2. The Stille 

cross-coupling reaction of 7 with bisstannanes TPD-Sn and DPP-Sn afforded the copol-

ymers P1 and P2, respectively. Both polymers were recovered in low yield after purifica-

tion by soxhlet extraction and purification through a silica gel plug, even after attempts at 

catalyst and solvent optimization. One possible reason for the low yield of the polymers 

may be due to a slow reaction time. Stille coupling polymerizations are generally per-

formed with the electron rich moiety as the stannane and the electron deficient as the di-

bromide.21, 28 An electron deficient stannane may result in a slower transmetallation, in-

creasing reaction time. The increased reaction time can lead to decomposition of the cata-

lyst in the form of palladium black. Another possibility, with literature precedent, is the 

transfer of a methyl group instead of the TPD or DPP groups due to a stronger aryl-tin 

bond, caused by the electron withdrawing TPD and DPP units.29-30 Both polymers dis-

played low solubility at room temperature in chloroform and P2 showed even lower sol-

ubility in chlorobenzene. 
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Scheme 5.2. Polymerization of P1 and P2. 

 Molecular weights were estimated using gel permeation chromatography (GPC) with 

chloroform as the mobile phase against polystyrene standards. The weights of both P1 

and P2 were exceptionally low, even with their low solubility in organic solvents. The 

number average molecular weight (Mn) of P1 was 2.5 kDa with a dispersity (Đ) of 1.3, 

while P2 had an Mn of 3.0 kDa and a Đ of 1.4. P1 and P2 both showed low degrees of 

poymerization (DPn) at 2.7 and 3.0, respectively. As discussed previously, these low de-

grees of polymerization are likely due to polymerization termination from methyl transfer 

and the low solubility of the materials in toluene. Thermal gravometric analysis was per-

formed under air to evaluate the thermal stability of the polymers. Both P1 and P2, with 

5% weight loss onsets of 403.3 and 358.1 °C, respectively, show greater thermal stability 

than PBDT-PPD, even with their significantly lower degree of polymerization. Molecular 

weight and thermal properties are summarized in Table 5.1. 
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Table 5.1. Physical and thermal properties of PPD polymers. 

Polymer Yield 
(%) 

Mn 
(kDa)a Đb DPn 

Td
c 

(°C) 

PBDT-PPDd 73 19.8 1.7 24.6 337.8 

P1 20 2.5 1.3 2.7 403.3 

P2 17 3.0 1.4 3.0 358.1 

aDetermined by GPC against polystyrene standards in chloroform at 40 °C. bDispersity: 
Mw/Mn. 

cTemperature at 5% weight loss with a heating rate of 20 °C min-1 under air. d De-
scribed in Chapter 4 of this dissertation.  

 

 The optical properties of the polymers in dilute CHCl3 solution and thin film were 

examined using UV-Vis spectroscopy and are shown in Figure 5.1 and 5.2, respectively. 

In solution, both polymers show broad, low-energy absorption bands, with λmax for P1 at 

511 nm and P2 at 719 nm, while P2 also possesses a small higher energy transition near 

410 nm. The high-energy band can be attributed to localized π-π* transitions, while the 

broad low-energy band is likely the result of intramolecular charge transfer (ICT) be-

tween the electron-donating PPD unit and the electron-deficient acceptor units.17, 19 While 

structurally different, the absorption profiles of P1 and PBDT-PPD are very similar in 

terms of λmax, with P1 also having slightly broader absorption. 

 Thin film absorption of P1 and P2 showed significant broadening of the low-energy 

transition, resulting in a red-shift in their absorption onsets of 95 and 45 nm for P1 and 

P2, respectively, between solution and film. Film measurements also resulted in a red-

shift of 18 nm in the λmax of P1 and a blue-shift of 39 nm in P2. Both P1 and P2 show the 

presence of a slight shoulder in the solid state. Unlike in solution, the absorption of P1 is  
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Figure 5.1. Normalized UV-vis absorption of PBDT-PPD, P1, and P2 in CHCl3. 

 
Figure 5.2. Normalized UV-vis absorption of PBDT-PPD, P1, and P2 as thin films. 
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significantly broader than that of PBDT-PPD. The optical bandgap, calculated from the 

absorption onset in the thin film, was found to be 1.78 eV for P1 and 1.40 eV for P2. The 

narrow bandgap of P2 is typical of many DPP containing polymers.7, 31-32 Both polymers 

had poor film forming properties when cast on glass slides, particularly P2. The poor film 

forming properties may be due to the low molecular weights, and not necessarily inherent 

to higher weight material. 

 

Table 5.2. Optical and electrochemical properties of PPD polymers. 

Polymer 𝜆𝜆maxsoln (nm)a 𝜆𝜆maxfilm  (nm) Eg
opt (eV)b 𝐸𝐸HOMO (eV)c 𝐸𝐸LUMO (eV)d 

PBDT-PPDe 526 533 2.20 -5.50 -3.30 

P1 511 529 1.78 -5.57 -3.79 

P2  719 680 1.40 -5.35 -3.95 

aMeasured in chloroform. bCalculated from the absorption onset of the film spectra. 
cCalculated from the oxidation onsets using the equation 𝐸𝐸𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = -4.8 - 𝐸𝐸𝑜𝑜𝑜𝑜. dCalculated 
from HOMO energy level and optical bandgap. eDescribed in Chapter 4 of this disserta-
tion. 

 

 The electrochemical properties of the polymers were investigated by cyclic voltam-

metry. Both polymers exhibit irreversible oxidation processes and no discernible reduc-

tion (Figure S19, Supporting Information), regardless of initial scan direction. The HO-

MO energy levels were estimated from the onset of oxidation using the absolute energy 

level of ferrocene/ferrocenium as 4.8 eV under vacuum and are summarized in Table 

5.2.33 Both polymers had HOMOs below the air oxidation threshold, with P1 at -5.57 eV 

and P2 at -5.35 eV.34 Lowest unoccupied molecular orbitals (LUMOs), calculated from 
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the sum of the HOMO and optical bandgap, were -3.79 and -3.95 eV for P1 and P2, re-

spectively. The low lying LUMO of both materials, matching well with that of PCBM, is 

optimal for use in photovoltaics as a donor material.35-36 The significantly lower LUMO 

of P1, when compared to PBDT-PPD, allows for a significantly smaller bandgap while 

still maintaining oxidative stability. Unlike P1, P2 showed a second oxidation peak 

which is likely due to decomposition of the polymer, as all successive experiments on the 

same film resulted in no signal. 

 

5.4 Conclusions 

Two donor-acceptor copolymers using pyrrolo[3,4-c]pyrrole-1,3-dione as the π-

electron donor were synthesized and their optical and electrochemical properties studied 

and compared to the polymer PBDT-PPD reported in Chapter 4 of this dissertation. The 

polymerization with the isoelectronic thieno[3,4-c]pyrrole-1,3-dione as the π-electron ac-

ceptor gave a medium bandgap polymer, P1, with a relatively deep HOMO and similar 

absorption to PBDT-PPD. The polymerization of PPD with thienyldiketopyrrolopyrrole 

as the π-electron acceptor gave a narrow bandgap polymer, P2, with broad absorption 

from 500 – 900 nm. The absorption profiles of P1 and P2, covering most of the solar 

spectrum, suggest they may be useful in tandem solar cells. The reduction in optical 

bandgap between PBDT-PPD and P1 (0.42 eV) and P2 (0.80 eV) indicates that the PPD 

unit has far greater potential as a π-electron donor than as an acceptor in donor-acceptor 

copolymers. Improved polymerization routes, such as direct arylation, may produce ma-

terials with weights viable for applications in organic electronics. 
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5.5 Experimental 

5.5.1 Synthesis 

General polymerization procedure. An oven dried two-neck flask was charged with 

8 (1.0 equiv.), stannane (1.05 equiv.), and deoxygenated toluene (7 mL). The solution 

was sparged with argon for an additional 20 min and followed by the addition of 

tetrakis(triphenylphosphine)palladium(0) (8 mol%). The reaction mixture was refluxed 

for 3 days. The polymer was end-capped by refluxing with trimethyl(phenyl)tin (50 mg) 

for 4 h, followed by refluxing with iodobenzene (0.1 mL) overnight. After cooling to am-

bient temperature, the mixture was precipitated into methanol and filtered through a 

Soxhlet thimble. The polymer was washed with methanol (4 h), acetone (4 h), hexanes 

(12 h), and extracted with chloroform. The chloroform fraction was then concentrated 

and the polymer run through a short silica gel plug. The resulting fraction was then con-

centrated (~5 mL) and precipitated into cold methanol, filtered, and dried in vacuo. 

 

Synthesis of P1. Following the general polymerization procedure using compounds 7 

(119.3 mg, 0.19 mmol) and TPD-Sn (150.6 mg, 0.20 mmol) gave the expected polymers 

as a dark red solid (33.5 mg, 20%). 1H NMR (600 MHz, CDCl3) δ 7.57, 6.84, 3.61, 1.68, 

1.42 – 1.16, 0.89. GPC (CHCl3, 40 °C): Mn = 2.5 kDa, Mw = 3.3 kDa, Đ = 1.3, DPn = 2.7. 

Td (5%) = 403.3 °C. 
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Synthesis of P2. Following the general polymerization procedure using compounds 7 

(152.5 mg, 0.24 mmol) and DPP-Sn (217.1 mg, 0.26 mmol) gave the expected polymers 

as a black solid (22.8 mg, 15%). 1H NMR (600 MHz, CDCl3) δ 8.99, 7.43, 4.06, 1.94, 

1.61 – 1.08, 1.08 – 0.55. GPC (CHCl3, 40 °C): Mn = 3.0 kDa, Mw = 4.3 kDa, Đ = 1.4, DPn 

= 3.0. Td (5%) = 358.1 °C. 
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5.7 Supporting Information 

5.7.1 Materials 

Air- and moisture-sensitive reactions were performed using standard Schlenk tech-

niques. Solvents used for palladium-catalyzed reactions were deoxygenated prior to use 

by sparging with argon for 30 minutes. 5-octyl-1,3-di(thiophen-2-yl)-4H-thieno[3,4-

c]pyrrole-4,6(5H)-dione37, 2,5-bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)-2,5-

dihydropyrrolo[3,4-c]pyrrole-1,4-dione38 were prepared according to modified literature 

procedures. All other chemical reagents were purchased commercially and used without 

further purification unless otherwise noted. 
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5.7.2 Characterization 

Nuclear magnetic resonance (NMR) spectra were collected on Varian VXR-300, Var-

ian MR-400, or Bruker Avance III-600 spectrometers. 1H NMR and 13C NMR spectra 

were internally referenced to the residual solvent peak. In all spectra, chemical shifts are 

given in ppm (δ) relative to the solvent. Gel permeation chromatography (GPC) meas-

urements were performed on a Shimadzu Prominence GPC with two 10 µm AM Gel col-

umns connected in series (guard, 10,000 Å, 1,000 Å) in chloroform at 40 °C relative to 

polystyrene standards. Thermogravimetric analysis (TGA) was performed over an inter-

val of 40 – 900 °C at a heating rate of 20 °C min-1 under ambient atmosphere. Cyclic 

voltammetry (CV) measurements were carried out using an e-DAQ e-corder 410 potenti-

ostat with a scanning rate of 100 mV s-1. The polymer films were dropcast from 1 – 2 mg 

mL-1 solutions in chlorobenzene onto a platinum working electrode. Ag/Ag+ and Pt wire 

were used as the reference and auxiliary electrodes, respectively. The reported values 

were referenced to Fc/Fc+ (-4.8 versus vacuum). All electrochemical experiments were 

performed in deoxygenated acetonitrile under an argon atmosphere using 0.1 M tetrabu-

tylammonium hexafluorophosphate as electrolyte. Absorption spectra were obtained on a 

photodiode-array Agilent 8453 UV-visible spectrophotometer using polymer solutions in 

CHCl3 and thin films. The films were cast by spin coating 25 x 25 x 1 mm glass slides 

using solutions of polymer (3.0 mg mL-1) in chlorobenzene at a spin rate of 1200 rpm on 

a Headway Research, Inc. PWM32 spin-coater. 
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5.7.3 Synthesis 

 

2-(2-butyloctyl)isoindoline-1,3-dione (1) Phthalimide (5.80 g, 39 mmol), 2-butyl-1-

octanol (5.64 g, 30 mmol), and triphenylphosphine (10.28 g, 39 mmol) were dissolved in 

ether (30 mL). The solution was cooled to 0 °C, followed by the dropwise addition of 

diisopropyl azodicarboxylate (8 mL, 41 mmol) in ether (15 mL) and allowed to stir over-

night at room temperature. The resulting precipitate was filtered, washed with ether, and 

the filtrate concentrated. The crude material was taken up in hexanes, washed with water, 

dried, and concentrated. The resulting yellow oil was further purified by silica gel chro-

matography using 1:4 ether/hexanes as eluent to afford the expected compound as a clear 

viscous oil (9.08 g, 95%). 1H NMR (400 MHz, CDCl3) δ 7.84 (dd, J = 5.4, 3.0 Hz, 2H), 

7.71 (dd, J = 5.4, 3.0 Hz, 2H), 3.57 (d, J = 7.2 Hz, 2H), 1.95 – 1.81 (m, 1H), 1.38 – 1.21 

(m, 16H), 0.87 (q, J = 6.9 Hz, 6H). 

 

2-butyl-1-octylamine (2) Compound 1 (9.08 g, 28.8 mmol) was dissolved in anhydrous 

EtOH (50 mL) followed by the dropwise addition of hydrazine monohydrate (4.4 mL, 91 

mmol). The reaction was refluxed for two days before the addition of excess 6M HCl and 

EtOH (20 mL) and refluxed one additional hour. The resulting precipitate was washed 

with water, and the filtrate was rotovaped to remove the EtOH. Excess 6M NaOH was 

added, and the product extracted with ether, dried over NaSO4, and concentrated to afford 
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the expected compound as a light yellow oil that was used without further purification 

(2.19 g, 97%).  

 

Diethyl 1H-pyrrole-3,4-dicarboxylate (3) A suspension of potassium tert-butoxide 

(11.5 g, 102 mmol) in THF (100 mL) was stirred under argon in a flame dried two neck 

500 mL round bottom flask. A solution of diethyl fumarate (8.8 g, 51.5 mmol) and p-

toluenesulfonylmethyl isocyanide (10.0 g, 51.6 mmol) in THF (50 mL) was slowly added 

to the suspension and allowed to stir overnight. The reaction was then quenched with a 

saturated sodium chloride solution, extracted with THF (3 x 200 mL), and dried with an-

hydrous sodium sulfate. The solvent was removed under reduced pressure and the result-

ing solid dissolved methanol (50 mL). The product was then precipitated in water, fil-

tered, and dried to afford the expected compound as an off-white solid (7.2 g, 67%). 

1HNMR (600 MHz, DMSO-d6) δ: 7.36 (s, 2H), 4.15 (q, J = 7.0 Hz, 4H), 1.23 (t, J = 7.1 

Hz, 6H); 13CNMR (150 MHz, DMSO-d6) δ: 163.41, 125.26, 115.03, 59.39, 14.20. 

 

Diethyl 1-(2-butyloctyl)-1H-pyrrole-3,4-dicarboxylate (4) Compound 3 (3.19 g, 15.1 

mmol) was dissolved in DMF (50 mL) and cooled to 0 °C. Sodium hydride (60% in min-

eral oil, 1.00 g, 25 mmol) was added slowly and the reaction allowed to stir at room tem-

perature for 1 h, after which 2-butyloctyl bromide (6.26 g, 25.1 mmol) was added drop-

wise. After stirring overnight, the reaction was poured into water (100 mL) and extracted 

with ethyl acetate (3 x 75 mL). The organic fractions were combined, washed with water, 

and dried over Na2SO4. The solvent was removed and the resulting oil purified by silica 

gel chromatography using 17:3 hexanes/ethyl acetate as eluent to afford the expected 
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compound as a clear viscous oil (4.36 g, 76%). 1H NMR (400 MHz, CDCl3) δ 7.36 (s, 

2H), 4.39 (q, J = 7.1 Hz, 4H), 3.83 (d, J = 7.0 Hz, 2H), 1.91 – 1.80 (m, 1H), 1.44 (t, J = 

7.1 Hz, 6H), 1.41 – 1.29 (m, 16H), 1.01 – 0.95 (m, 6H); 13C NMR (101 MHz, CDCl3) δ 

163.88, 128.28, 116.06, 60.31, 54.41, 39.62, 31.88, 31.23, 30.91, 29.62, 28.62, 26.39, 

23.02, 22.76, 14.51, 14.22, 14.15; HRMS (ESI) m/z: [M + H]+ calcd for C22H37Br2NO4, 

380.2801; found, 380.2797; deviation, 1.1 ppm. 

 

Diethyl 2,5-dibromo-1-(2-butyloctyl)-1H-pyrrole-3,4-dicarboxylate (5) Compound 4 

(1.9 g, 5 mmol) was dissolved in DMF (50 mL), protected from light, and cooled to 0 °C. 

Freshly recrystallized NBS (1.98 g, 11.1 mmol) was added in two portions and the reac-

tion stirred overnight at room temperature. The reaction mixture was poured into water 

(100 mL) and extracted with ether (3 x 75 mL). The combined organic fractions were 

washed with water, brine, and then dried over Na2SO4. The solvent was removed and the 

resulting orange oil purified by silica gel chromatography using 9:1 hexanes/ethyl acetate 

as eluent to give the expected compound as a clear viscous oil (2.54 g, 93%). 1H NMR 

(600 MHz, CDCl3) δ 4.31 (q, J = 7.1 Hz, 4H), 3.96 (d, J = 7.6 Hz, 2H), 2.02 – 1.96 (m, 

1H), 1.34 (t, J = 7.1 Hz, 6H), 1.32 – 1.17 (m, 16H), 0.88 (td, J = 7.0, 4.9 Hz, 6H); 13C 

NMR (151 MHz, CDCl3) δ 163.04, 117.61, 107.58, 61.18, 52.41, 38.37, 31.93, 31.23, 

30.98, 29.67, 28.71, 26.49, 23.10, 22.77, 14.29, 14.24, 14.18; HRMS (ESI) m/z: [M + 

H]+ calcd for C22H35Br2NO4, 536.1006; found, 536.1011; deviation, -1.01 ppm. 

 

2,5-dibromo-1-(2-butyloctyl)-1H-pyrrole-3,4-dicarboxylic acid (6) Compound 5 (2.54 

g, 4.7 mmol) was dissolved in ethanol (50 mL). A solution of sodium hydroxide (1.62 g, 
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40.5 mmol) in water (50 mL) was added in one portion, and the reaction mixture refluxed 

overnight. Upon cooling, the reaction was poured into water (300 mL), acidified with ex-

cess 6M HCl, and extracted with ether (3 x 250 mL). The combined organic fractions 

were washed with excess water, brine, and dried over Na2SO4. Removal of the solvent 

gave the expected compound as a tacky off white solid (2.22 g, 98%). 1H NMR (400 

MHz, DMSO-d6) δ 3.96 (d, J = 7.6 Hz, 2H), 1.94 (p, J = 6.7 Hz, 1H), 1.33 – 1.13 (m, 

16H), 0.84 (t, J = 6.5 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 163.80, 117.83, 

107.32, 51.62, 37.48, 31.11, 30.61, 30.39, 28.92, 27.98, 25.73, 22.42, 22.08, 13.99, 

13.87; HRMS (ESI) m/z: [M + H]+ calcd for C18H27Br2NO4, 480.0380; found, 480.0373; 

deviation, 1.38 ppm. 

 

4,6-dibromo-2,5-bis(2-butyloctyl)pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (7) Com-

pound 6 (2.22 g, 4.6 mmol) was dissolved in acetic anhydride (35 mL) and refluxed 

overnight. After cooling, the reaction mixture was concentrated resulting in a dark tan 

solid. 2-butyl-1-octylamine (1.09 g, 5.6 mmol) in toluene (30 mL) was added in one por-

tion and refluxed overnight. After cooling, the toluene was removed under vacuum and 

the resulting solid was taken up in thionyl chloride (25 mL) and refluxed 5 h. The reac-

tion was cooled and the excess thionyl chloride removed under vacuum. Purification of 

the crude material by silica gel chromatography using 19:1 hexanes/THF as eluent gave 

the expected product as a dark yellow oil (2.37 g, 81%). 1H NMR (400 MHz, CDCl3) δ 

3.90 (d, J = 8.0 Hz, 1H), 3.88 (d, J = 7.7 Hz, 1H), 3.43 (d, J = 7.2 Hz, 2H), 2.01 – 1.88 

(m, 1H), 1.84 – 1.75 (m, 1H), 1.35 – 1.19 (m, 32H), 0.90 – 0.84 (m, 12H); HRMS (APCI) 
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m/z: [M + H]+ calcd for C30H50Br2N2O2, 629.2312; found, 629.2302; deviation, 1.56 

ppm. 

 

5-octyl-1,3-bis(5-(trimethylstannyl)thiophen-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-

dione (TPD-Sn) 5-octyl-1,3-di(thiophen-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione 

(0.73 g, 1.7 mmol) was dissolved in THF (40 mL) and cooled to -78 °C. Freshly prepared 

LDA (5.5 mmol, 0.8 M in THF) was added dropwise and the reaction stirred at  -78 °C 

for 2 h. Trimethyltin chloride solution (6.0 mL, 6 mmol, 1.0 M in THF) was added drop-

wise and the reaction stirred overnight at room temperature. The reaction was quenched 

with water (30 mL) and extracted with dichloromethane (3 x 75 mL). The combined or-

ganic layers were washed with water and dried over Na2SO4. After removal of the sol-

vent, the crude material was recrystallized from ethanol to give the expected product as a 

dark yellow powder (0.63 g, 49%). 1H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 3.5 Hz, 

2H), 7.19 (d, J = 3.5 Hz, 2H), 3.66 (t, J = 7.4 Hz, 2H), 1.68 (p, J = 14.8, 7.7, 6.9 Hz, 2H), 

1.39 – 1.19 (m, 10H), 0.86 (t, J = 6.6 Hz, 3H), 0.42 (s, 18H).; 13C NMR (101 MHz, 

CDCl3) δ 162.94, 143.86, 138.02, 136.61, 136.41, 130.77, 127.83, 38.71, 31.94, 29.38, 

29.33, 28.70, 27.15, 22.78, 14.25, -7.93; HRMS (ESI) m/z: [M2 + Na]+ calcd for 

C56H78N2O4S6Sn4, 1532.0281; found, 1532.0286; deviation, 0.3 ppm. 
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2,5-bis(2-ethylhexyl)-3,6-bis(5-(trimethylstannyl)thiophen-2-yl)-2,5-

dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP-Sn) 2,5-bis(2-ethylhexyl)-3,6-

di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (0.66 g, 1.3 mmol) was dis-

solved in THF (40 mL) and cooled to -78 °C. Freshly prepared LDA (4 mmol, 0.8 M in 

THF) was added dropwise and the reaction stirred at  -78 °C for 2 h. Trimethyltin chlo-

ride solution (4.4 mL, 4.4 mmol, 1.0 M in THF) was added dropwise and the reaction 

stirred overnight at room temperature. The reaction was quenched with water (30 mL) 

and extracted with dichloromethane (3 x 75 mL). The combined organic layers were 

washed with water and dried over Na2SO4. Removal of the solvent gave the expected 

product as a dark purple solid (0.98 g, 92%). The stannane was used without further puri-

fication. 1H NMR (400 MHz, CDCl3) δ 8.99 (d, J = 3.7 Hz, 2H), 7.32 (d, J = 3.6 Hz, 2H), 

4.05 (t, J = 7.7 Hz, 4H), 1.94 – 1.77 (m, 2H), 1.42 – 1.15 (m, 16H), 0.93 – 0.80 (m, 12H), 

0.44 (s, 18H). 
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Figure S5.1. 1H NMR of 1. 
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Figure S5.2. 1H NMR of 2. 
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Figure S5.3. 1H NMR of 3. 
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Figure S5.4. 1H NMR of 4. 

215 



www.manaraa.com

216 
 

 
 

  

Figure S5.5. 13C NMR of 4. 
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Figure S5.6. 1H NMR of 5. 
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Figure S5.7. 13C NMR of 5. 
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Figure S5.8. 1H NMR of 6. 
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Figure S5.9. 13C NMR of 6. 
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Figure S5.10. 1H NMR of 7 

221 



www.manaraa.com

222 
 

 
 

  

Figure S5.11. 13C NMR of 7. 
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Figure S5.12. 1H NMR of TPD-Sn 
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Figure S5.13. 13C NMR of TPD-Sn. 
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Figure S5.15. 1H NMR of DPP-Sn. 
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Figure S5.15. 1H NMR of P1. 
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Figure S5.16. 1H NMR of P2. 
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Figure S5.17. Normalized UV-vis absorption spectra of P1. 

 

Figure S5.18. Normalized UV-vis absorption spectra of P2. 
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Figure S5.19. Cyclic voltammetry traces of a) P1 and b) P2. 
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Figure S5.20. Thermal gravometric analysis of P1 and P2. 
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CHAPTER 6 

 

GENERAL CONCLUSIONS 

 

6.1 Dissertation Conclusions 

Throughout this dissertation, the author has demonstrated how heterocycle substitution 

can have a dramatic, and potentially unintended, impact the physical, optical, 

electrochemical, and photovoltaic properties of donor materials used in organic electronics. 

A change as small as a heteroatom substitution up or down a group can selectively tune 

energy levels by either stabilizing or destabilizing them, resulting in wider or narrower 

bandgaps. Along the same lines, a substitution with a heteroatom from a different group 

can completely reverse the role of a building block from being π-electron acceptor, like 

TPD, to a π-electron donor, as in PPD. Full heterocycle substitution can further be used to 

tune the absorption of materials, by playing on strength of aromaticity. The use of 

thienothiophene in molecular donors resulted in materials that had a blue-shifted 

absorption, due to higher aromaticity, and larger degree of π-stacking than their 

bithiophene analogues. Replacing the bridging silicon of DTS with a carbon results in 

materials with red-shifted absorption and narrow bandgap, but lower current density when 

used in preliminary photovoltaic devices, thought to be the result of reduced structural 

order caused by the shorter covalent bonds. 

 While many of these materials are still in the process of being optimized in 

photovoltaic devices, their optical and electrochemical properties suggest they have the 

potential for significantly higher efficiencies than similar analogues that have been 
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previously reported. The alkyl chain effect being studied on the DPP based devices will 

give useful insight into judicious alkyl chain selection for future generations of materials. 

This work adds to the ever growing understanding of  the importance heterocycle selection 

plays on the electronic, optical, and physical properties of materials for organic 

photovoltaics.  
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APPENDIX 

LIST OF ACRONYMS AND DESCRIPTIONS 

 

Acronym Description 

A Acceptor 

AFM Atomic force microscopy 

APCI Atmospheric-pressure chemical ionization 

BDT Benzo[1,2-b:4,5-b']dithiophene 

BHJ Bulk-heterojunction 

BLA Bond lengthalternation 

BT 2,2’-bithiophene 

CB Chlorobenzene 

CN 1-chloronapthalene 

CPDT Cyclopenta[2,1-b;3,4-b′]dithiophene 

CV Cyclic voltammetry 

D Donor 

D-A Donor-acceptor 

DIO 1,8-diiodooctane 

DFT Density functional theory 

DPn Degree of polymerization 

DPP 1,4-diketopyrrolo[3,4-c]pyrrole 

DTS Dithieno[3,2-b:2',3'-d]silole 
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Acronym Description 

DSC Differential scanning calorimetry 

Đ Dispersity 

Eg Bandgap 

Eg
opt Optical bandgap 

Eg
EC Electrochemical bandgap 

ESI Electron-spray ionization 

FBT 5-fluoro-2,1,3-benzothiadiazole 

FF Fill factor 

GPC Gel permeation chromatography 

HOMO Highest occupied molecular orbital 

HRMS High resolution mass spectrometry 

ISC Current density 

ICT Intramolecular charge transfer 

ITO Indium tin oxide 

J Current density 

JSC Short-circuit current density 

LUMO Lowest unoccupied molecular orbital 

Mn Number-averaged molecular weight 

MO Molecular orbital 

Mw Weight-averaged molecular weight 

NMR Nuclear magnetic resonance 

o-DCB 1,2-dichlorobenzene 
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Acronym Description 

OFET Organic field-effect transistor 

OLED Organic light-emitting diode 

OPV Organic photovoltaic cell 

P3HT poly(3-hexylthiophene) 

PCBM [6,6]-phenyl-C61-butyric acid methyl ester 

PC[60]BM [6,6]-phenyl-C61-butyric acid methyl ester 

PC[61]BM [6,6]-phenyl-C61-butyric acid methyl ester 

PC61BM [6,6]-phenyl-C61-butyric acid methyl ester 

PC71BM [6,6]-phenyl-C71-butyric acid methyl ester 

PC[70]BM [6,6]-phenyl-C61-butyric acid methyl ester 

PC[71]BM [6,6]-phenyl-C61-butyric acid methyl ester 

PCE Power conversion efficiency 

PDI Poly Dispersity Index 

PEDOT:PSS Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate 

PITN Polyisothianaphthene 

PPD Pyrrolo[3,4-c]pyrrole-4,6-dione 

PPP Poly(para-phenylenevinylene) 

PPV  Poly(phenylenevinylene) 

PT Polythiophene 

PV Photovoltaic 

PVC Photovoltaic Cell 

SCE Standard calomel electrode 
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Acronym Description 

SCLC Space-charge limited current 

Td Thermal decomposition temperature 

TGA Thermal gravimetric analysis 

TPD Thieno[3,4-c]pyrrole-4,6-dione 

TT Thieno[3,2-b]thiophene 

VOC Open circuit voltage 

ε Molar absorptivity 

λmax Wavelength of maximum absorption 
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